微胶囊-纤维水泥基复合材料的动态压缩性能
王险峰1,2盛敏1,2覃达威1,2周晓青1,2邢锋2

1.深圳大学土木与交通工程学院,广东深圳518060;2.深圳大学广东省滨海土木工程耐久性重点实验室,广东深圳518060

防灾减灾工程及防护工程;自修复混凝土;微胶囊;纤维;动态力学性能;霍普金森压杆

Dynamic compression properties of microcapsule-fiber cementitious composites
WANG Xianfeng1,2,SHENG Min1,2,QIN Dawei1,2,ZHOU Xiaoqing1,2,and XING Feng2

1.College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China;2.Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China

disaster prevention and mitigation engineering; self-healing concrete; microcapsule; fiber; dynamic mechanical property; Hopkinson pressure bar

DOI: 10.3724/SP.J.1249.2023.01092

备注

微胶囊自修复水泥基材料具有良好的修复性能,但力学性能会随着微胶囊的加入有所减弱.纤维的加入可以增强材料的裂缝效果,与微胶囊形成有效互补.为研究纤维类型和应变率对微胶囊自修复水泥基材料压缩性能的影响,设计3种配合比类型,即聚乙烯醇(polyvinylalcohol,PVA)纤维、聚酰胺(polyamide,PA)纤维及PVA-PA混杂纤维的实验试件,基于立方体抗压实验系统及分离式霍普金森压杆装置(splitHopkinsonpressurebar,SHPB),研究不同应变率下的动态压缩行为.研究结果表明,在应变率为1×10-5s-1时,加入PVA、PA和PVA-PA后,自修复水泥基材料的压缩强度分别下降了12.96%、8.91%和9.03%;随着应变率的提高,材料的压缩强度不断增大,且材料的动态增长因子与应变率满足线性关系;在低应变率下,纤维能改善材料的能量吸收能力,耗散能及能量耗散因子有所提高.研究可为混凝土材料在动态条件下提高自修复性能提供实验依据.
The microcapsule-based self-healing cementitious materials have good repaire performance. However, the mechanical performance is weakened due to the introduction of microcapsules. The addition of fibers can improve the cracking performance and form an effective complement to the microcapsules. In order to study the influence of fiber type and strain rate on the compressive properties of microcapsule self-healing cement-based materials , we design three strain rate loading tests are on experimental specimens of three mix proportion types, namely polyvinyl alcohol (PVA) fibers, polyamide (PA) fibers and PVA-PA hybrid fibers through the cube compression test and the split Hopkinson pressure bar (SHPB) test. The results show that when the strain rate is 10-5 s-1, the compressive strength of self-healing cement-based materials decreases by 12. 96%, 8. 91% and 9. 03% after adding PVA, PA and PVA-PA, respectively. With the increase of the strain rate, the compressive strength of the material increases, and the dynamic growth factor of the material has a linear relationship with the strain rate. At low strain rate, fibers can improve the energy absorption capacity of the material. The dissipated energy and energy dissipation factor are improved. This study could provide experimental basis for improving self-healing performance of concrete materials under dynamic conditions.
·