硅-1, 6-己二硫醇-硅分子器件的输运性质
杨竣皓1,Daniel S.KOSOV2,Jeffrey R.REIMERS1, 3

1)上海大学理学院,量子与分子结构国际中心,上海 200444; 2)詹姆斯·库克大学科学与工程学院,汤斯维尔 QLD 4811,澳大利亚; 3)悉尼科技大学数学与物理科学学院,悉尼 2007,澳大利亚

量子调控; 分子器件; 自组装单分子膜; 量子输运; 硅电极; 零偏压电导; 电子透射谱

Electron transport properties of molecular devices based on silicon-1, 6-hexanedithiol-silicon
YANG Junhao1, Daniel S.KOSOV2, and Jeffrey R.REIMERS1, 3

1)College of Science, International Centre for Quantum and Molecular Structures and School of Physics, Shanghai University, Shanghai 200444, P.R.China;2)College of Science and Engineering, James Cook University, Townsville QLD 4811, Australia;3)School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia

quantum control; molecular devices; self-assembled monolayers; quantum transport; silicon electrodes; zero bias conductance; electron transmission spectrum

DOI: 10.3724/SP.J.1249.2021.06636

备注

为揭示硅-硫分子结的微观结构与电学输运性质的依赖关系,基于密度泛函理论结合非平衡格林函数方法,研究硅-1, 6-己二硫醇-硅分子器件的结构及电子输运性质,分析该器件的零偏压电导以及电子透射谱.采用Gaussian 16软件包优化硅-1, 6-己二硫醇-硅的原子团簇结构,从中选取8组稳定的原子团簇结构构建了分子结模型,再用VASP软件对分子结进行结构优化,计算了分子结的零偏压电导及电子透射谱.结果表明,硅-硫分子结与基于金属电极所构建的金-硫分子结存在显著不同,硅-硫分子结的微观结构对其电学输运性质有至关重要的影响硅-硫分子结的微观结构对零偏压电导及透射谱等电输运性质有重要影响.研究结果可为理解基于硅-1, 6-己二硫醇-硅分子器件的自组装单分子膜的结构和性质提供参考.
To reveal how the electronic transport properties of the silicon-sulfur molecular junction depend on its microscopic structure, we studied the configuration and electronic transport properties of a silicon-1, 6-hexanedithiol-silicon molecular device, based on density functional theory(DFT)combined with the non-equilibrium Green's function(NEGF)method. Eight groups of molecular junctions were modeled, each consisting of a 1, 6-hexanedithiol molecule spanning two silicon tips. Following optimisation of the molecular structure, first of the 1, 6-hexanedithiol by itself and then of the junction as a whole, the zero-bias conductance and electronic transmission spectrum were calculated. The results show that silicon-sulfur molecular junctions have characteristics that differ significantly from those of gold-sulfur molecular junctions. The structural details of the silicon-sulfur molecular junction are shown to have a crucial influence on its electronic transport properties such as zero-bias piezoelectric conductance and transmission spectra.
·