太赫兹频率上转换成像器件研究

1)中国科学院上海微系统与信息技术研究所太赫兹固态技术重点实验室,上海 200050; 2)上海理工大学光电信息与计算机工程学院,上海 200093; 3)中国科学院大学, 北京 100049

半导体器件与技术; 太赫兹; 量子阱; 探测器; 频率上转换; 成像

Terahertz frequency up-conversion imaging devices
FU Zhanglong1, SHAO Dixiang2, ZHANG Zhenzhen1, LI Ruizhi1, 3, and CAO Juncheng1

1)Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R.China2)School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China3)University of Chinese Academy of Sciences, Beijing 100049, P.R.China

semiconductor devices and technology; terahertz; quantum-well; detector; frequency up-conversion; imaging

DOI: 10.3724/SP.J.1249.2019.02147

备注

太赫兹成像器件是太赫兹技术应用的关键之一.研制一种由分子束外延技术堆叠生长太赫兹量子阱探测器和近红外发光二极管制成的THz频率上转换成像器件,其45°入射角耦合器件峰值探测频率为5.2 THz,峰值响应率为0.22 A/W,噪声等效功率为5.2×1012 W/Hz0.5,可实现对太赫兹量子级联激光器光斑的清晰成像; 研制的金属光栅耦合器件可实现正入射成像,有效减小成像图形畸变,并且有利于制备大面积器件.阐述器件的工作原理、制备方法、基本性能和成像性能,并对器件电流-电压特性、成像质量、成像畸变原因等问题进行讨论.该器件利用无像素成像技术,无需低温读数电路,无需阵列倒装封装,为THz成像技术提供一种简便、高性能的途径.

Terahertz(THz)imaging device is one of the key technologies in THz technology applications. A THz frequency up-conversion imaging device made of THz quantum-well photodetectors and light-emitting diode(THz QWP-LEDs)is fabricated by stacking and growing THz QWPs and near-infrared LEDs with molecular beam epitaxy technology. The 45° facet coupler has a peak response of 0.22 A/W at the peak detection frequency of 5.2 THz and a noise equivalent power of 5.2×1012 W/Hz0.5. And the device also has the ability to image the spot of the terahertz quantum cascade laser(THz QCL)clearly. The developed metal grating coupler can achieve normal incidence imaging, effectively reduce the image distortion and is conducive to the preparation of large area devices. The working principle, fabrication method, basic performance and imaging performance of the devices are introduced in detail. The current-voltage characteristics, imaging quality and imaging distortion of the device are discussed. The devices have no need of cryogenic reading integrated circuits and flip-chip package based on pixel-free imaging technology. Therefore, the development of these devices can provide a simple way for high-performance THz imaging.

·