自旋轨道耦合对超冷排斥费米气体相变的影响

1)深圳大学物理科学与技术学院, 深圳 518060; 2)山西大学理论物理研究所,太原 030006

凝聚态物理; Fermi-Hubbard模型; 密度矩阵重整化群; 光学晶格; 自旋轨道耦合; Zeeman场; Mott绝缘态

Effects of the spin-orbit coupling on the phase transition of ultra cold repulsive Fermi gases
Zhao Hua1, Li Huayan1, and Zhou Xiaofan2

Zhao Hua1, Li Huayan1, and Zhou Xiaofan21)College of Physics Science and Technology, Shenzhen University, Shenzhen 518060, P.R.China2)Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, P.R.China

condensed matter physics; Fermi-Hubbard model; density-matrix-renormalization-group(DMRG); optical lattice; spin-orbit coupling(SOC); Zeeman field; Mott insulator phase

DOI: 10.3724/SP.J.1249.2014.06570

备注

利用密度矩阵重整化群(density-matrix-renormalization-group,DMRG)方法,研究自旋轨道耦合和Zeeman场作用下处于一维光学晶格中的排斥费米气体的量子相变.研究表明,当自旋轨道耦合与Zeeman场共同作用于系统时,自旋轨道耦合效应将增强系统的金属性,同时削弱Zeeman场对系统的极化作用.当自旋轨道耦合作用较弱使系统保持为Mott绝缘态时,随自旋轨道耦合强度的变化,Zeeman场的极化效应使系统呈现不同的量子态.

By using the density-matrix-renormalization-group(DMRG)method, the phase transition of ultra-cold repulsive Fermi gases loaded on one-dimensional optical lattices is investigated when spin-orbit coupling(SOC)and Zeeman field are involved. It is found that the SOC effects enhance the metal phase and reduce the polarization of the system in the presence of both the SOC and a large Zeeman field. Furthermore, when the system keeps a Mott insulation state under the weak spin orbit coupling, it is shown at different SOC strengths, the system appears as different quantum states due to the polarization effect of Zeeman field.

·