石墨烯中量子反常霍尔效应研究进展
乔振华1,2,3,4,任亚飞1,2

1)中国科学技术大学物理系,合肥 230026; 2)中国科学技术大学合肥微尺度物质科学国家实验室,国际量子功能材料设计中心,合肥 230026; 3)中国科学技术大学量子信息与量子科技前沿协同创新中心,合肥 230026; 4)美国德克萨斯大学奥斯汀分校物理系,德克萨斯奥斯汀 78712,美国

凝聚态物理; 石墨烯; 量子反常霍尔效应; Rashba自旋-轨道耦合; 交换场; 拓扑量子态

Recent progress on quantum anomalous Hall effect in graphene
Qiao Zhenhua1,2,3,4 and Ren Yafei1,2

Qiao Zhenhua1,2,3,4 and Ren Yafei1,21)Department of Physics, University of Science and Technology of China, Hefei 230026, P.R.China2)ICQD/HFNL, University of Science and Technology of China, Hefei 230026, P.R.China3)Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P.R.China4)Department of Physics, University of Texas at Austin, Autin 78712, Texas, USA

condensed matter physics; graphene; quantum anomalous Hall effect; Rashba spin-orbit coupling; exchange field; topological quantum state

DOI: 10.3724/SP.J.1249.2014.06551

备注

量子反常霍尔效应是一种存在于二维电子气中,具有无带隙的手性边缘态但体态绝缘的物理现象.不同于强磁场下量子化朗道能级引起的量子霍尔效应,量子反常霍尔效应可通过引入自旋轨道耦合相互作用以及交换场来实现.作者回顾了量子反常霍尔效应的研究进展,评述了石墨烯中的量子反常霍尔效应.通过理论模型预言在石墨烯体系中引入交换场破坏时间反演对称性,通过考虑Rashba自旋-轨道耦合,可在狄拉克点打开一个拓扑非平庸的量子反常霍尔效应体能隙,进一步分析解释其物理根源.讨论了几种实验原型,尝试通过外部操控在石墨烯中实现量子反常霍尔效应.

Quantum anomalous Hall effect is a physical phenomenon of two-dimensional systems characterized by the insulating bulk states and chirally propagating gapless edge modes. Different from the quantum Hall effect caused by quantized Landau-level due to the strong magnetic field, the quantum anomalous Hall effect can be realized by the joint effect of spin-orbit coupling and local magnetization in the absence of Landau-level. In this paper, we, after briefly introducing the history and current status of the quantum anomalous Hall effect, mainly focus on the graphene which is a famous two-dimensional material possesses intriguing electronic and magnetic properties. We first give a simple theoretical model where the exchange field is present to break the time reversal symmetry and then the Rashba spin-orbit coupling opens an energy gap to realize quantum anomalous Hall effect in graphene. Then we further explain the microscopic mechanism. At last, we discuss several possible experimental prototypes aimed at realizing the quantum anomalous Hall effect in realistic.

·