[1]孔德学,敖谷昌,张惠玲,等.差异化收费下货车出行选择偏好分析及建模[J].深圳大学学报理工版,2023,40(2):210-217.[doi:10.3724/SP.J.1249.2023.02210]
 KONG Dexue,AO Guchang,et al.Analysis and modeling of trucks travel choice preference under differentiated charging[J].Journal of Shenzhen University Science and Engineering,2023,40(2):210-217.[doi:10.3724/SP.J.1249.2023.02210]
点击复制

差异化收费下货车出行选择偏好分析及建模()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第40卷
期数:
2023年第2期
页码:
210-217
栏目:
交通物流
出版日期:
2023-03-15

文章信息/Info

Title:
Analysis and modeling of trucks travel choice preference under differentiated charging
文章编号:
202302011
作者:
孔德学12 敖谷昌3 张惠玲3 徐威威3
1)武汉理工大学智能交通系统研究中心,湖北武汉 430063
2)武汉理工大学交通与物流工程学院,湖北武汉 430063
3)重庆交通大学交通运输学院,重庆 400074
Author(s):
KONG Dexue1 2 AO Guchang3 ZHANG Huiling3 and XU Weiwei3
1) Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, Hubei Province, P.R.China
2) College of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, Hubei Province, P.R.China
3) College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, P.R.China
关键词:
交通运输工程高速公路出行方式选择偏好潜在类别货车驾驶员差异化收费
Keywords:
transportation engineering expressway travel mode choice preference latent class truck driver differentiated charge
分类号:
U491;F542
DOI:
10.3724/SP.J.1249.2023.02210
文献标志码:
A
摘要:
为研究高速公路差异化收费对货车驾驶员出行选择行为的影响,基于非集计模型的理论框架,将多项式logit(multinomial logit, MNL)模型、巢式logit(nested logit, NL)模型与潜在类别模型相结合,针对高速公路低峰期和高峰期2类情形,建立潜在类别MNL和NL模型,以刻画备选出行方式之间的相关性及货车驾驶员的选择偏好.以中国重庆市为例进行实证分析,结果表明,相较于传统MNL与NL模型,潜在类别MNL模型与出发时间位于上层的潜在类别NL模型的拟合效果更佳.不同类别的货车驾驶员在低峰与高峰期间的出行选择行为与货物类型、付费方式及收费费率等因素显著相关,其中,收费费率的影响最大.通过适当调整高速公路的收费费率及提高服务质量可以增强高速公路的货运竞争力.
Abstract:
To study the impact of expressway differentiated charging on the travel choice behavior of truck drivers, this paper combines the multinomial logit (MNL) model, the nested logit (NL) model and the latent class model based on the theoretical framework of the disaggregation model. For the low and peak periods of the expressway, the latent class MNL model and NL model are established to depict the correlation among alternative travel modes and the choice preference of truck drivers. The results of the empirical analysis in Chongqing, China, show that the latent class MNL model, and the latent class NL model with the departure time in the upper layer have better fitting effect than the traditional MNL and NL models. The travel choice behavior of truck drivers of different categories during the low and peak periods is significantly related to the cargo type, payment method and toll rate, among which the toll rate with the greatest impact. By properly adjusting the toll rates and improving the service quality, the freight competitiveness of the expressway can be enhanced.

参考文献/References:

[1] 中华人民共和国交通运输部.全面推广高速公路差异化收费实施方案[EB/OL].(2021-06-15) [2022-06-07]. https://xxgk.mot.gov.cn/2020/jigou/glj/202106/t20210615_3609815.html.
Ministry of Transport of the People’s Republic of China. Implementation plan for comprehensively promoting differentiated toll charging of expressways [EB/OL]. (2021-06-15) [2022-06-07]. https://xxgk.mot.gov.cn/2020/jigou/glj/202106/t20210615_3609815.html.(in Chinese)
[2] WEN C H, CHOU P L, HONG L Y, et al. A latent class nested Logit model of intercity bus carrier choice [J]. Journal of the Eastern Asia Society for Transportation Studies, 2011, 9: 382-394.
[3] 马莹莹,陆思园,张晓明,等.考虑个体风险偏好差异的高速公路出行选择模型[J].吉林大学学报工学版,2021,51(5):1673-1683.
MA Yingying, LU Siyuan, ZHANG Xiaoming, et al. Model of highway travel selection considering individual risk preference difference [J]. Journal of Jilin University Engineering and Technology Edition, 2021, 51(5): 1673-1683.(in Chinese)
[4] ARENTZE T, FENG T, TIMMERMANS H, et al. Context-dependent influence of road attributes and pricing policies on route choice behavior of truck drivers: results of a conjoint choice experiment [J]. Transportation, 2012, 39(6): 1173-1188.
[5] POLITIS I, KYRIAKOGLOU M, GEORGIADIS G, et al. Evidence from highway drivers in Greece showing toll avoidance and utility of alternative routes [J]. Transportation Research Record, 2020, 2674(9): 948-958.
[6] 姚恩建,李挺然,王雪然,等.考虑货车路径选择行为的高速公路拥挤路段收费研究[J].北京交通大学学报,2018,42(4):63-71.
YAO Enjian, LI Tingran, WANG Xueran, et al. Study on the charge in congested freeway sections considering the influence of truck route choice behavior [J]. Journal of Beijing Jiaotong University, 2018, 42(4): 63-71.(in Chinese)
[7] 关宏志.非集计模型:交通行为分析的工具[M].北京:人民交通出版社,2004:10-22.
GUAN Hongzhi. Disaggregate model: a tool of traffic behavior analysis [M]. Beijing: China Communication Press, 2004: 10-22.(in Chinese)
[8] MA T Y, GERBER P, CARPENTIER S, et al. Mode choice with latent preference heterogeneity: a case study for employees of the EU institutions in Luxembourg [J]. Transportmetrica A: Transport Science, 2015, 11(5): 441-463.
[9] 刘志伟,刘建荣,邓卫.无人驾驶汽车对出行方式选择行为的影响[J].西南交通大学学报,2021,56(6):1161-1168.
LIU Zhiwei, LIU Jianrong, DENG Wei. Impact of autonomous vehicle on travel mode choice behavior [J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1161-1168.(in Chinese)
[10] WEN C H, WANG W C, FU C. Latent class nested Logit model for analyzing high-speed rail access mode choice[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(2): 545-554.
[11] ZANGUI M, AASHTIANI H Z, LAWPHONGPANICH S, et al. Path-differentiated pricing in congestion mitigation[J]. Transportation Research Part B: Methodological, 2015, 80(10): 202-219.
[12] FEMATT V L, GRIMM R P, NYLUND G K, et al. Identifying transfer student subgroups by academic and social adjustment: a latent class analysis [J]. Community College Journal of Research and Practice, 2021, 45(3): 167-183.
[13] SWANSON S A, LINDENBERG K, BAUER S, et al. A Monte Carlo investigation of factors influencing latent class analysis: an application to eating disorder research[J]. International Journal of Eating Disorders, 2012, 45(5): 677-684.

相似文献/References:

[1]李健,贾元华,陈峰.高速公路转向快速路的匝道控制[J].深圳大学学报理工版,2011,28(No.5(377-470)):466.
 LI Jian,JIA Yuan-hua,and CHEN Feng.Local ramp control for urban expressway and related periphery freeway[J].Journal of Shenzhen University Science and Engineering,2011,28(2):466.
[2]李健,贾元华,敖谷昌.主线机动容量合理分配的匝道协同控制[J].深圳大学学报理工版,2012,29(No.5(377-470)):466.[doi:10.3724/SP.J.1249.2012.05466]
 LI Jian,JIA Yuan-hua,and AO Gu-chang.Reasonable allocation of flexible capacity for ramp coordinated metering[J].Journal of Shenzhen University Science and Engineering,2012,29(2):466.[doi:10.3724/SP.J.1249.2012.05466]
[3]陈娇娜,张生瑞,靳引利.高速公路行程时间可靠性的小波密度估计[J].深圳大学学报理工版,2016,33(4):432.[doi:10.3724/SP.J.1249.2016.04432]
 Chen Jiaona,Zhang Shengrui,and Jin Yinli.Highway travel time reliability modeling based on wavelet density estimation[J].Journal of Shenzhen University Science and Engineering,2016,33(2):432.[doi:10.3724/SP.J.1249.2016.04432]
[4]柯文豪,陈华鑫,雷宇,等.基于GRNN神经网络的沥青路面裂缝预测方法[J].深圳大学学报理工版,2017,34(4):378.[doi:10.3724/SP.J.1249.2017.04378]
 Ke Wenhao,Chen Huaxin,Lei Yu,et al.Prediction method for asphalt pavement crack based on GRNN neural network[J].Journal of Shenzhen University Science and Engineering,2017,34(2):378.[doi:10.3724/SP.J.1249.2017.04378]
[5]李伟,罗钦.基于逐步优化的轨道交通网络行车计划衔接[J].深圳大学学报理工版,2018,35(6):629.[doi:10.3724/SP.J.1249.2018.06629]
 LI Wei and LUO Qin.Rail transit network planning based on gradual optimization[J].Journal of Shenzhen University Science and Engineering,2018,35(2):629.[doi:10.3724/SP.J.1249.2018.06629]
[6]杨少伟,赖泓志,潘兵宏,等.高速公路主线相互合流至出口最小间距的研究[J].深圳大学学报理工版,2018,35(6):643.[doi:10.3724/SP.J.1249.2018.06643]
 YANG Shaowei,LAI Hongzhi,PAN Binghong,et al.Minimum spacing between the mainline of highway mutual confluence and the mainline exit[J].Journal of Shenzhen University Science and Engineering,2018,35(2):643.[doi:10.3724/SP.J.1249.2018.06643]
[7]于泉,刘洋,郭骁伟.基于路口相关性的交通流量修复研究[J].深圳大学学报理工版,2019,36(3):304.[doi:10.3724/SP.J.1249.2019.03304]
 YU Quan,LIU Yang,and GUO Xiaowei.Restoration of traffic flow data based on intersection correlation[J].Journal of Shenzhen University Science and Engineering,2019,36(2):304.[doi:10.3724/SP.J.1249.2019.03304]
[8]贺云鹏,李建国.平面移动式立体车库客流状态聚类研究[J].深圳大学学报理工版,2020,37(3):314.[doi:10.3724/SP.J.1249.2020.03314]
 HE Yunpeng and LI Jianguo.Passenger flow state clustering in flat mobile automated garage[J].Journal of Shenzhen University Science and Engineering,2020,37(2):314.[doi:10.3724/SP.J.1249.2020.03314]
[9]周菁楠,李伟,罗钦.城轨车站大客流条件下列车运行调整[J].深圳大学学报理工版,2020,37(6):617.[doi:10.3724/SP.J.1249.2020.06617]
 ZHOU Jingnan,LI Wei,and LUO Qin.Adjustment for train operation under the condition of mass passenger flow in urban rail transit[J].Journal of Shenzhen University Science and Engineering,2020,37(2):617.[doi:10.3724/SP.J.1249.2020.06617]
[10]李军,郑培庆.城市公交过剩通勤分析与评价——以广州市为例[J].深圳大学学报理工版,2020,37(6):623.[doi:10.3724/SP.J.1249.2020.06623]
 LI Jun and ZHENG Peiqing.Analyzing and evaluating of the urban transit excess commuting: a case study of Guangzhou City[J].Journal of Shenzhen University Science and Engineering,2020,37(2):623.[doi:10.3724/SP.J.1249.2020.06623]

备注/Memo

备注/Memo:
Received: 2022- 07-09; Accepted: 2022-10-15; Online (CNKI): 2022-11-04
Foundation: Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0786, cstc2020jcyj-msxmX0083); Research Supervisor Team Building Foundation of Chongqing (JDDSTD2018007)
Corresponding author: Professor AO Guchang. E-mail: agc2002@163.com
Citation: KONG Dexue, AO Guchang, ZHANG Huiling, et al. Analysis and modeling of trucks travel choice preference under differentiated charging [J]. Journal of Shenzhen University Science and Engineering, 2023, 40(2): 210-217.(in Chinese)
基金项目:重庆市自然科学基金资助项目(cstc2019jcyj-msxmX0786,cstc2020jcyj-msxmX0083);重庆市研究生导师团队建设资助项目(JDDSTD2018007)
作者简介:孔德学(1996—),武汉理工大学博士研究生.研究方向:交通行为理论与实证研究.E-mail: dexue_kong@163.com
引文:孔德学,敖谷昌,张惠玲,等.差异化收费下货车出行选择偏好分析及建模[J].深圳大学学报理工版,2023,40(2):210-217.
更新日期/Last Update: 2023-03-30