参考文献/References:
[1] 陈亮,王金泓,何涛,等.基于SVR的区域交通碳排放预测研究[J].交通运输系统工程与信息,2018,18(2):13-19.
CHEN Liang, WANG Jinhong, HE Tao, et al. Forecast study of regional transportation carbon emissions based on SVR [J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 13-19.(in Chinese)
[2] 董洁霜,方天源,周亦威.基于ARIMA模型的城市路网交通运行指数预测研究[J].智能计算机与应用,2021,11(12):165-170.
DONG Jieshuang, FANG Tianyuan, ZHOU Yiwei. Research of prediction on urban road network traffic operation index based on ARIMA model [J]. Intelligent Computer and Applications, 2021, 11(12): 165-170.(in Chinese)
[3] KRANTI K, PARID M, KATRYAI V K. Short term traffic flow prediction for a non urban highway using artificial neural network [J]. Procedia - Social and Behavioral Sciences, 2013, 104: 755-764.
[4] 马秋芳.改进PSO优化的BP神经网络短时交通流预测[J].计算机仿真,2019,36(4):94-98,323.
MA Qiufang. BP neural network short-term traffic flow prediction based on improved particle swarm optimization [J]. Computer Simulation, 2019, 36(4): 94-98, 323.(in Chinese)
[5] 车国鹏,刘永红.遗传算法优化BP神经网络的交通流参数预测[J].综合运输,2018,40(6):64-67,108.
CHE Guopeng, LIU Yonghong. A prediction of traffic flow parameters based on BP neural network optimized by genetic algorithm [J]. China Transportation Review, 2018, 40(6): 64-67, 108.(in Chinese)
[6] 唐克双,陈思曲,曹喻旻,等.基于Inception卷积神经网络的城市快速路行程速度短时预测[J].同济大学学报自然科学版,2021,49(3):370-381.
TANG Keshuang, CHEN Siqu, CAO Yumin, et al. Short-term travel speed prediction for urban expressways based on convolutional neural network with inception module [J]. Journal of Tongji University Natural Science, 2021, 49(3): 370-381.(in Chinese)
[7] 杨建喜,郁超顺,李韧,等.基于多周期组件时空神经网络的路网通行速度预测[J].交通运输系统工程与信息,2021,21(3):112-119,139.
YANG Jianxi, YU Chaoshun, LI Ren, et al. Traffic network speed prediction via multi-periodic-component spatial-temporal neural network [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 112-119, 139.(in Chinese)
[8] 冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769.
FENG Ning, GUO Shengnan, SONG Chao, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting [J]. Journal of Software, 2019, 30(3): 759-769.(in Chinese)
[9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[10] 马刚. 网约车用户出行行为分析及需求预测——以海口市为例[D]. 武汉:武汉大学,2020.
MA Gang. Online car-hailing users’ traveling behavior analysis and demand predicting: a Haikou City case study [D]. Wuhan: Wuhan University, 2020.(in Chinese)
[11] LAI Yongxuan, ZHANG Kaixin, LIN Junqiang, et al. Taxi demand prediction with LSTM-based combination model [C]// IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Xiamen, China: IEEE, 2019: 944-950.
[12] 卢家品. 数据驱动的车辆轨迹数据地图匹配方法[D]. 合肥:合肥工业大学,2020.
LU Jiapin. A data-driven map-matching method for driving trajectory data [D]. Hefei: Hefei University of Technology, 2020.(in Chinese)
[13] 赵慧萍. 基于SVR和LSTM的公交车到站时间预测方法研究[D]. 大连:大连海事大学,2020.
ZHAO Huiping. Research on bus arrival time prediction method based on SVR and LSTM [D]. Dalian: Dalian Maritime University, 2020.(in Chinese)
[14] 宋现敏,刘明鑫,马林,等. 基于极限学习机的公交行程时间预测方法[J].交通运输系统工程与信息, 2018,18(5):140-146, 154.
SONG Xianmin, LIU Mingxin, MA Lin, et al. Bus travel time prediction based on extreme learning machine [J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 140-146, 154.(in Chinese)
相似文献/References:
[1]吴鹏昆,吴园园,徐兵.ATIS环境下的多用户多准则交通均衡模型分析[J].深圳大学学报理工版,2015,32(2):213.[doi:10.3724/SP.J.1249.2015.02213]
Wu Pengkun,Wu Yuanyuan,and Xu Bing.Multiclass and multicriteria stochastic traffic network equilibrium model based on ATIS[J].Journal of Shenzhen University Science and Engineering,2015,32(2):213.[doi:10.3724/SP.J.1249.2015.02213]
[2]黄中伟,庄焰,谭也平.城市车流加减速延误分析[J].深圳大学学报理工版,2002,19(3):60.
HUANG Zhong-wei,ZHUANG Yan,TAN Ye-ping.Analysis for Acceleration and Deceleration Delay in Urban Traffic Flow[J].Journal of Shenzhen University Science and Engineering,2002,19(2):60.
[3]薛召杰,袁秋芳,季楷丰.基于缓冲时间的共享车位分配鲁棒方法[J].深圳大学学报理工版,2022,39(2):216.[doi:10.3724/SP.J.1249.2022.02216]
XUE Zhaojie,YUAN Qiufang,and JI Kaifeng.Robust method of shared parking allocation based on buffer time[J].Journal of Shenzhen University Science and Engineering,2022,39(2):216.[doi:10.3724/SP.J.1249.2022.02216]