[1]李兴瑞,肖玉柱,宋学力,等.不连续驱动-响应网络的固定与预定时间同步[J].深圳大学学报理工版,2022,39(6):709-718.[doi:10.3724/SP.J.1249.2022.06709]
 LI Xingrui,XIAO Yuzhu,SONG Xueli,et al.Fixed and preassigned-time synchronization of drive-response networks with discontinuous activation functions[J].Journal of Shenzhen University Science and Engineering,2022,39(6):709-718.[doi:10.3724/SP.J.1249.2022.06709]
点击复制

不连续驱动-响应网络的固定与预定时间同步()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第6期
页码:
709-718
栏目:
数学与应该数学
出版日期:
2022-11-15

文章信息/Info

Title:
Fixed and preassigned-time synchronization of drive-response networks with discontinuous activation functions
文章编号:
202206013
作者:
李兴瑞肖玉柱宋学力赵楠楠史东鑫单美华
长安大学理学院,陕西西安 710064
Author(s):
LI Xingrui XIAO Yuzhu SONG Xueli ZHAO Nannan SHI Dongxin SHAN Meihua
School of Sciences, Chang’an University, Xi’an 710064, Shaanxi Province, P.R.China
关键词:
应用数学复杂网络固定时间稳定性不连续激活函数固定时间同步预定时间同步
Keywords:
applied mathematics complex networks fixed-time stability discontinuous activation functions fixed-time synchronization preassigned-time synchronization
分类号:
O193
DOI:
10.3724/SP.J.1249.2022.06709
文献标志码:
A
摘要:
研究具有不连续激活函数的驱动-响应网络固定时间与预定时间同步问题.针对不连续系统,通过比较原理和变量代换推导更精确的固定时间稳定性定理,并设计不含线性项的固定时间同步控制器与控制增益有限的预定时间同步控制器.基于所提出的定理与控制器,结合不连续微分方程理论,分别得到实现网络固定时间同步与预定时间同步的充分条件.预定同步时间可根据实际情况预先指定,与系统初始值及控制器参数无关.数值模拟结果验证了稳定性定理的正确性与同步时间估计的准确性.
Abstract:
Concerned with the problem of fixed and preassigned-time synchronization of drive-response networks with discontinuous activation function. For discontinuous systems, a fixed-time stability theorem with more accurate stable time estimation is derived by comparison principle and variable substitution. A fixed-time synchronization controller without linear term and a preassigned-time synchronization controller with limited control gain are designed. Based on the proposed theorem and controller, combined with the theory of discontinuous differential equations, the sufficient conditions for realizing fixed-time synchronization of drive-response networks with discontinuous activation function are obtained. Then, the sufficient condition for realizing the preassigned-time synchronization of drive-response networks with discontinuous activation function is obtained. Wherein, the synchronization time can be prespecified according to the actual situation, and it is independent on the initial value of the system and its controller parameters. Finally, the numerical simulations demonstrate the correctness of the stability theorem and the accuracy of the synchronization time estimation.

相似文献/References:

[1]吴雪飞,徐晨.基于牵制控制的一类线性耦合复杂网络同步[J].深圳大学学报理工版,2011,28(No.5(377-470)):460.
 WU Xue-fei and XU Chen.The synchronization of a dynamic complex network with linear coupling[J].Journal of Shenzhen University Science and Engineering,2011,28(6):460.
[2]吴维扬,丰建文,赵毅.基于随机牵制控制的复杂网络均方簇同步[J].深圳大学学报理工版,2015,32(5):538.[doi:10.3724/SP.J.1249.2015.05538]
 Wu Weiyang,Feng Jianwen,and Zhao Yi.Mean square cluster synchronization of complex networks via random pinning control[J].Journal of Shenzhen University Science and Engineering,2015,32(6):538.[doi:10.3724/SP.J.1249.2015.05538]
[3]毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96.[doi:10.3724/SP.J.1249.2016.01096]
 Mao Beixing and Wang Zhanwei.Finite-time synchronization control of a class of fractional-order complex network systems[J].Journal of Shenzhen University Science and Engineering,2016,33(6):96.[doi:10.3724/SP.J.1249.2016.01096]
[4]李娜,丰建文,赵毅.具有马氏跳拓扑复杂网络的有限时间同步[J].深圳大学学报理工版,2016,33(4):359.[doi:10.3724/SP.J.1249.2016.04359]
 Li Na,Feng Jianwen,and Zhao Yi.Finite-time synchronization of Markovian jump complex networks[J].Journal of Shenzhen University Science and Engineering,2016,33(6):359.[doi:10.3724/SP.J.1249.2016.04359]
[5]董怀琴,潘彬彬,陈文胜,等.基于增量非负矩阵分解的自适应背景模型[J].深圳大学学报理工版,2016,33(5):511.[doi:10.3724/SP.J.1249.2016.05511]
 Dong Huaiqin,Pan Binbin,Chen Wensheng,et al.Adaptive background modeling via incremental non-negative matrix factorization[J].Journal of Shenzhen University Science and Engineering,2016,33(6):511.[doi:10.3724/SP.J.1249.2016.05511]
[6]潘静静,王晓峰.复杂网络视角下的港口连通性建模及应用[J].深圳大学学报理工版,2017,34(5):544.[doi:10.3724/SP.J.1249.2017.05544]
 Pan Jingjing,and Wang Xiaofeng.Port connectivity model based on complex network and its application[J].Journal of Shenzhen University Science and Engineering,2017,34(6):544.[doi:10.3724/SP.J.1249.2017.05544]
[7]徐韧哲,汪家伟,叶声豪,等.基于SIQR模型的新冠肺炎期间深圳市防控措施分析[J].深圳大学学报理工版,2020,37(3):257.[doi:10.3724/SP.J.1249.2020.03257]
 XU Renzhe,WANG Jiawei,YE Shenghao,et al.Analysis of prevention measures in Shenzhen based on SIQR model during the novel coronavirus pneumonia[J].Journal of Shenzhen University Science and Engineering,2020,37(6):257.[doi:10.3724/SP.J.1249.2020.03257]
[8]王静红,等.混合模型下的雅可比矩阵退火算法优化[J].深圳大学学报理工版,2021,38(2):188.[doi:10.3724/SP.J.1249.2021.02188]
 WANG Jinghong,FENG Chan,et al.Optimization of Jacobian matrix annealing algorithm based on hybrid model[J].Journal of Shenzhen University Science and Engineering,2021,38(6):188.[doi:10.3724/SP.J.1249.2021.02188]

更新日期/Last Update: 2022-11-30