[1]梁弼,刘笃晋,熊伦,等.一种内容和地点感知的个性化POI推荐模型[J].深圳大学学报理工版,2022,39(6):693-700.[doi:10.3724/SP.J.1249.2022.06693]
 LIANG Bi,LIU Dujin,XIONG Lun,et al.A content-location-aware personalized POI recommendation model[J].Journal of Shenzhen University Science and Engineering,2022,39(6):693-700.[doi:10.3724/SP.J.1249.2022.06693]
点击复制

一种内容和地点感知的个性化POI推荐模型()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第6期
页码:
693-700
栏目:
电子与信息科学
出版日期:
2022-11-15

文章信息/Info

Title:
A content-location-aware personalized POI recommendation model
文章编号:
202206011
作者:
梁弼刘笃晋熊伦许晓红
1)四川文理学院智能制造学院,四川达州 635000;2)北京邮电大学计算机学院,北京100876
Author(s):
LIANG Bi LIU Dujin XIONG Lun XU Xiaohong
1) School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, Sichuan Province, P.R.China 2) School of Computer Science, Beijing University Of Posts and Telecommunications, Beijing 100876, P.R.China
关键词:
人工智能兴趣点推荐数据稀疏性内容主题地点主题上下文因素潜在关系概率生成模型位置社交网络
Keywords:
artificial intelligence point of interest recommendation data sparsity content topic location topic contextual factors latent relation probabilistic generative model location-based social network
分类号:
TP391;TP319
DOI:
10.3724/SP.J.1249.2022.06693
文献标志码:
A
摘要:
针对兴趣点(point-of-interest, POI)推荐中用户-POI矩阵数据稀疏问题,当前的研究通过探索地理位置、内容信息及社会关系等上下文因素来缓解该问题,但仍缺乏对这些上下文因素共同作用情况进行综合分析及利用.为此,采用概率生成的方法提出一种内容和地点感知的主题模型(content-location-aware topic model, CLATM),用以模拟用户在决策过程中的签到行为.该模型由内容主题建模和地点主题建模两个核心模块构成,用户签到内容依赖内容主题和地点主题,内容主题和地点主题在一定程度上共同决定用户签到地点,地理位置依赖于地点主题并服从高斯分布.该模型不仅恰当地整合了内容、地点和地理等重要的上下文因素,且充分利用这些因素之间的潜在关系效缓解了数据稀疏性.在Foursquare和Yelp两个真实的位置社交网络数据集上对CLATM进行性能评测,实验结果表明,该模型在召回率(recall)和归一化折损累计增益(normalized discounted cumulative gain, NDCG)指标上均优于基准,recall@20和NDCG@20最大分别提高约141.09%和94.44%.综合使用上下文因素的共同作用能有效提升POI推荐性能.
Abstract:
Aiming at the data sparsity problem of user-POI (i.e. point of interest) matrix in POI recommendation, more and more researches have explored the contextual factors such as geographical location, content information and social relations to deal with the problem. However, the current studies lack comprehensive analysis and utilization of the relations of these contextual factors. In view of this, this paper proposes a probabilistic generative model--content-location-aware topic model (CLATM) to simulate the user check-in behavior in the decision-making process from the dual-perspective of content and location. CLATM is a content and location aware topic model, which consists of two core modules: content topic modeling and location topic modeling. In addition, the user check-in content depends on the content topic and the location topic. The content topic and the location topic jointly determine the user check-in location to a certain extent. The geographical location depends on the location topic and follows the Gaussian distribution. The CLATM model not only integrates the important contextual factors properly, but also makes full use of the latent relations between these factors to alleviate the data sparsity effectively. The performance of the CLATM model is evaluated on two real location-based social network (LBSN) datasets, Foursquare and Yelp. The experimental results show that the model is superior to the baselines in recall and normalize discounted cumulative gain (NDCG), with the maximum increase of about 141.09% and 94.44% in recall@20 and NDCG@20, respectively. It can be concluded that comprehensive use of the relations of contextual factors can effectively improve the POI recommendation performance.

相似文献/References:

[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(6):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
 LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(6):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
 CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(6):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
 ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(6):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
 Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
 Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(6):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
 Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(6):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
 Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(6):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
 Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(6):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
 Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(6):8.

更新日期/Last Update: 2022-11-30