[1]孙猛,姜官军,冯继哲,等.竖井乏风废热提取用于井口防冻的现场实测[J].深圳大学学报理工版,2022,39(6):637-641.[doi:10.3724/SP.J.1249.2022.06637]
 SUN Meng,JIANG Guanjun,FENG Jizhe,et al.The field measurement of wellhead anti-freezing technology using exhaust wind waste heat[J].Journal of Shenzhen University Science and Engineering,2022,39(6):637-641.[doi:10.3724/SP.J.1249.2022.06637]
点击复制

竖井乏风废热提取用于井口防冻的现场实测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第6期
页码:
637-641
栏目:
土木与建筑工程
出版日期:
2022-11-15

文章信息/Info

Title:
The field measurement of wellhead anti-freezing technology using exhaust wind waste heat
文章编号:
202206004
作者:
孙猛姜官军冯继哲马天泽周琳
1)中国矿业大学深部岩土力学与地下工程国家重点实验室,江苏徐州 221116;2)中国矿业大学力学与土木工程学院,江苏徐州 221116;3)山东美天能源科技股份有限公司,山东泰安 271019
Author(s):
SUN Meng JIANG Guanjun FENG Jizhe MA Tianze ZHOU Lin
1) State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P.R.China 2) School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P.R.China 3) Shandong Meitian Energy Technology Co.Ltd., Tai’an 271019, Shandong Province, P.R.China
关键词:
岩土工程节能技术乏风废热井口防冻乏风-新风换热
Keywords:
geotechnical engineering energy-saving technology exhaust wind waste heat wellhead anti-freezing heat transfer between exhaust wind and fresh wind
分类号:
TK89
DOI:
10.3724/SP.J.1249.2022.06637
文献标志码:
A
摘要:
为解决夏热冬冷地区、寒冷地区和严寒地区冬季井口防冻和节能减排等问题,提出了新型的矿井乏风-新风间壁式直接换热技术,并在神华宁夏煤业集团有限公司付诸实施. 对某煤矿进行现场实测发现:换热后的新风输送至井口,与部分室外新风混合后的温度不低于2 ℃,满足煤矿规范要求;通过滴状冷凝充分吸收乏风中的潜热,且换热过程不需要额外能源,仅需为新风提供动力,供暖期性能系数(制热量与输入功率的比值)达到12.1;通过替代原有[2×104] kg燃煤锅炉,年减排二氧化碳[1.881×107] kg、氮氧化物[4.8×104] kg、二氧化硫[4.8×104] kg;可使矿井乏风直接排放至大气中的矿尘减少[2.178×104] kg/a.该系统每个供暖季运行费用仅为225.85万元,比天然气锅炉系统节省426.65万元,比燃煤锅炉系统节省799.81万元.间壁式乏风-新风直接换热技术不仅运行费+用低,而且运行过程无废水、废气及废渣等污染,是一项绿色环保、高效节能的新技术,为建设现代化新型绿色矿山提供一条新途径.
Abstract:
A new type of directly heat transfer technology between exhaust wind and fresh air was proposed and put into practice in Shenhua Ningxia Coal Industry Group Co. Ltd. so as to solve the problems of wellhead anti-freezing, energy saving and emission reduction in hot-summer-cold-winter region, cold region and severe cold region in winter. The field measurement results show that after heated and transported to the wellhead, the fresh air is mixed with some outdoor fresh air, and its temperature is not less than 2 ℃, which meets the requirements of coal mine specifications; the latent heat in the exhaust wind is fully absorbed through droplet condensation, and the heat transfer process does not need additional energy, but only the fresh air needs power. The average coefficient of performance (ratio of heating capacity to input power) in a heating period reaches 12.1, by replacing the original [2.0×104] kg of coal-fired boilers with new technology, the emissions of [1.881×107] kg carbon dioxide, [4.8×104] kg nitrogen oxides, [4.8×104] kg of sulfur dioxide, and [2.178×104] kg of dust directly, which used to be discharged into the atmosphere by mine exhaust wind, will be reduced annually. The operating cost of the system is only 2.258 5 million Yuan per heating season, saving 4.2665 million Yuan compared with the natural gas boiler system and 7.9981 million Yuan compared with the coal-fired boiler system. The use of wall type exhaust wind and fresh air direct heat transfer technology has low operation cost, and it has no pollution of waste water, waste gas and waste residue in the operation process. It is a green environmental protection, high efficiency and energy saving technology, and can provide technical support for the construction of new modern and green mine.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(6):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(6):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(6):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(6):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(6):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(6):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(6):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(6):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(6):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(6):501.[doi:10.3724/SP.J.1249.2017.05501]

更新日期/Last Update: 2022-11-30