[1]钟安海,郭天魁.水平井多簇支撑剂分布数值模拟[J].深圳大学学报理工版,2022,39(5):576-583.[doi:10.3724/SP.J.1249.2022.05576]
 ZHONG Anhai and GUO Tiankui.Numerical simulation of multi-cluster proppant distribution in horizontal wells[J].Journal of Shenzhen University Science and Engineering,2022,39(5):576-583.[doi:10.3724/SP.J.1249.2022.05576]
点击复制

水平井多簇支撑剂分布数值模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第5期
页码:
576-583
栏目:
环境与能源
出版日期:
2022-09-16

文章信息/Info

Title:
Numerical simulation of multi-cluster proppant distribution in horizontal wells
文章编号:
202205012
作者:
钟安海1 郭天魁2
1)中石化胜利油田分公司石油工程技术研究院,山东东营 257100
2)中国石油大学(华东)石油工程学院,山东青岛 266580
Author(s):
ZHONG Anhai1 and GUO Tiankui2
1) Research Institute of Petroleum Engineering, Sinopec Shengli Oilfield Company, Dongying 257100, Shandong Province, P.R.China
2) School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P.R.China
关键词:
油田开发水平井水力压裂水平井筒多簇射孔支撑剂计算流体力学模型欧拉模型
Keywords:
oilfield development horizontal well hydraulic fracturing horizontal wellbore multi-cluster perforation proppant computational fluid dynamic (CFD) model Euler model
分类号:
TE357.12
DOI:
10.3724/SP.J.1249.2022.05576
文献标志码:
A
摘要:
在水平井分段多簇压裂中,支撑剂在不同射孔中的分布直接影响到裂缝中的支撑剂铺置,进而影响压裂效果.为研究不同影响因素对支撑剂在水平井筒不同射孔簇间分布规律,基于欧拉-欧拉方法的计算流体力学模型,对水力压裂过程中不同射孔簇内支撑剂的分布状态进行模拟,得到不同条件下不同射孔簇间支撑剂的分布规律.模拟结果表明,由于重力影响,底部射孔中支撑剂浓度高于顶部射孔;当压裂液黏度由5 mPa·s增加到100 mPa·s时,不同射孔簇中支撑剂浓度差降低,促进支撑剂在簇间均匀分布;当压裂液流速由4.3 m/s提高到10.6 m/s时,不同射孔中支撑剂浓度差增大,但利于相同射孔簇中支撑剂均匀分布;当支撑剂密度由1.50 × 103 kg/m3增加到3.00 × 103 kg/m3,且支撑剂粒径由150 μm增加到600 μm时,支撑剂沉降速度加快,使不同射孔簇中支撑剂浓度差增大,影响支撑剂在簇间均匀分布.研究结果可用于指导水力压裂加砂设计.
Abstract:
For the staged multi-cluster fracturing of horizontal wells, the distribution of fracturing proppant inside different perforations directly affects the placement of proppant in the fracture, which in turn affects the fracturing performance. In order to study the distribution law of fracturing proppant among different perforation clusters along the horizontal wellbore with different influencing factors, we simulate the distribution state of fracturing proppant inside the different perforation clusters over the hydraulic fracturing process by using the Euler-Eulerian method-based computational fluid dynamics (CFD) model. We obtain the distribution law of the proppant among the perforation clusters under different conditions. The simulation results show that the proppant concentration in the bottom perforation is higher than that in the top perforation due to the influence of gravity; while the viscosity of fracturing fluid increases from 5 mPa·s to 100 mPa·s, the concentration difference of proppant in different perforation clusters decreases, which promotes the uniform distribution of proppant among clusters; while the flow rate of fracturing fluid increases from 4.3 m/s to 10.6 m/s, the difference of proppant concentration in different perforations increases, but it is beneficial to the uniformity of proppant distribution in the same perforation cluster; when the proppant density is increased from 1.50 × 103 kg/m3 to 3.00 × 103 kg/m3 and the proppant particle size is increased from 150 μm to 600 μm, the settling rate of proppant is accelarated, the concentration difference of proppant in different perforation clusters is increased, which affects the uniform distribution of proppant among clusters. The findings of this work can be used to guide the design of hydraulic fracturing proppant addition.

参考文献/References:

[1] 马俊修,石胜男,陈进,等.基于机器学习的玛湖地区水平井压裂设计优化[J].深圳大学学报理工版,2021,38(6):621-627.
MA Junxiu, SHI Shengnan, CHEN Jin, et al. Optimization of fracturing design for horizontal wells in mahu area based on machine learning [J]. Journal of Shenzhen University Science and Engineering, 2021, 38 (6): 621-627.(in Chinese)
[2] 曾军胜,戴城,方思冬,等.支撑剂在交叉裂缝中运移规律的数值模拟[J].断块油气田,2021,28(5):691-695.
ZENG Junsheng, DAI Cheng, FANG Sidong, et al. Numerical simulation of proppant migration in cross fractures [J]. Fault Block Oil and Gas Field, 2021, 28(5): 691-695.(in Chinese)
[3] 郭天魁,曲占庆,李明忠,等.大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发[J].实验室研究与探索,2018,37(10):242-246.
GUO Tiankui, QU Zhanqing, LI Mingzhong, et al. Development of virtual simulation device for large-scale complex crack proppant transport and transfer [J]. Journal of Laboratory Research and Exploration, 2018, 37(10): 242-246.(in Chinese)
[4] 高金剑,万晶,胡蓝霄,等.页岩气多裂缝结构支撑剂沉降规律实验[J].断块油气田,2020,27(5):643-646.
GAO Jinjian, WAN Jing, HU Lanxiao, et al. Experiment on proppant settlement law in shale gas multi-fracture structure [J]. Fault Block Oil and Gas Field, 2020, 27(5): 643-646.(in Chinese)
[5] 徐荣利,郭天魁,曲占庆,等.基于离散裂缝模型的页岩油储层压裂渗吸数值模拟[J].工程科学学报,2022,44(3):451-463.
XU Rongli, GUO Tiankui, QU Zhanqing, et al. Numerical simulation of fracturing seepage in shale oil reservoir based on discrete fracture model [J]. Journal of Engineering Sciences, 2022, 44(3): 451-463.(in Chinese)
[6] 潘林华,王海波,贺甲元,等.水力压裂支撑剂运移与展布模拟研究进展[J].天然气工业,2020,40(10):54-65.
PAN Linhua, WANG Haibo, HE Jiayuan, et al. Research progress on hydraulic fracturing proppant movement and spread simulation [J]. Natural Gas Industry, 2020, 40(10): 54-65.(in Chinese)
[7] 聂玲,师煜凯,程任.支撑剂颗粒沉降速度的影响因素[J]. 云南化工,2018,45(2):31-32.
NIE Ling, SHI Yukai, CHENG Ren. Influencing factors of proppant particle sedimentation rate [J]. Yunnan Chemical Industry, 2018, 45(2): 31-32.(in Chinese)
[8] 蒋廷学,卞晓冰.深层油气藏多级迂回暂堵压裂技术研究[J].深圳大学学报理工版,2021,38(6):590-597.
JIANG Tingxue, BIAN Xiaobing. Research on multi-stage detour temporary plugging fracturing technology for deep oil and gas reservoirs [J]. Journal of Shenzhen University Science and Engineering, 2021, 38(6): 590-597.(in Chinese)
[9] HARRIS P C, MORGAN R G, HEATH S J. Measurement of proppant transport of fracturing fluids [C]// The 2005 SPE Annual Technical Conference and Exhibition. Dallas, USA: [s. n.], 2005: SPE-95287-MS.
[10] PALISCH T T, VINCENT M C, HANDREN P J. Slickwater fracturing: food for thought [J]. SPE Production and Operations, 2010, 25(3): 327-344.
[11] CRESPO F, AVEN N K, CORTEZ J, et al. Proppant distribution in multistage hydraulic fractured wells: a large-scale inside-casing investigation [C]// The SPE Hydraulic Fracturing Technology Conference. Woodlands, USA: [s.n.], 2013: SPE-163856-MS.
[12] FARAJ A, MISKIMINS J. Proppant transport and behavior in horizontal wellbores using low viscosity fluids [C]// The SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, USA: [s.n.], 2019: SPE-194379-MS.
[13] WU C H, SHARMA M M. Modeling proppant transport through perforations in a horizontal wellbore [J]. SPE Journal, 2019, 24(4):1777-1789.
[14] 张清红.欧拉气相-欧拉固相-拉格朗日离散颗粒模型的流化床数值模拟[D].哈尔滨:哈尔滨工业大学, 2020.
ZHANG Qinghong. Numerical simulation of fluidized bed in Euler gas phase-Euler solid phase-Lagrange discrete particle model [D]. Harbin: Harbin Institute of Technology, 2020.(in Chinese)
[15] 张超,王志远,都凯.基于CFD-DEM耦合模型的粗糙裂缝中支撑剂运移规律研究[C]// 第31届全国水动力学研讨会论文集,厦门:海洋出版社,2020:688-701.
ZHANG Chao, WANG Zhiyuan, DU Kai. Study on proppant transport law in rough cracks based on CFD-DEM coupling model [C]// Proceedings of the 31st National Symposium on Hydrodynamics. Xiamen, China:Ocean Press,2020: 688-701.(in Chinese)
[16] 郑永,王海柱,李根生,等.超临界CO2压裂迂曲裂缝内支撑剂运移特征[J].天然气工业,2022,42(3):71-80.
ZHENG Yong, WANG Haizhu, LI Gensheng, et al. Characteristics of proppant migration in tortuous fractures in supercritical CO2 fracturing [J]. Natural Gas Industry, 2022, 42(3):71-80.(in Chinese)
[17] 俞强强,施红辉,董若凌,等.竖直上升圆管内气液两相流流型特性的数值模拟[J].浙江理工大学学报自然科学版,2022,47(3):397-404.
YU Qiangqiang, SHI Honghui, DONG Ruoling, et al. Numerical simulation of flow characteristics of gas-liquid two-phase flow in a vertically ascending circular tube [J]. Journal of Zhejiang Sci-Tech University Natural Science Edition, 2022, 47(3): 397-404.(in Chinese)
[18] 吴国英,来志强,武彩萍.基于CFD的固液两相流管道压力数值研究[J].中国水运,2020,20(10):110-113,115.
WU Guoying, LAI Zhiqiang, WU Caiping. Numerical study on pressure of solid-liquid two-phase flow pipeline based on CFD [J]. China Water Transport, 2020, 20(10): 110-113,115.(in Chinese)
[19] 郭传州.自吸式WEMCO浮选机内固-液两相流体力学和混合特性的模拟[D].赣州:江西理工大学,2020.
GUO Chuanzhou. Simulation of solid-liquid two-phase fluid dynamics and mixing characteristics of self-priming WEMCO flotation machine [D]. Ganzhou: Jiangxi University of Science and Technology, 2020.(in Chinese)
[20] 陈铭.水平井分段多簇压裂多裂缝竞争扩展数值模拟研究[D].北京:中国石油大学(北京),2020.
CHEN Ming. Numerical simulation study on multi-fracture competitive expansion of multi-cluster fracturing in horizontal wells [D]. Beijing: China University of Petroleum (Beijing), 2020.(in Chinese)
[21] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战[M].青岛:人民邮电出版社,2017.
LI Pengfei, XU Minyi, WANG Feifei. Proficient in CFD engineering simulation and case practice [M]. Qingdao: People’s Post and Telecommunications Press, 2017.(in Chinese)

相似文献/References:

[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
 Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(5):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]袁彬,苏玉亮,丰子泰,等.体积压裂水平井缝网渗流特征与产能分布研究[J].深圳大学学报理工版,2013,30(No.5(441-550)):545.[doi:10.3724/SP.J.1249.2013.05545]
 Yuan Bin,Su Yuliang,Feng Zitai,et al.Productivity distribution and flow characteristics of volume-fractured horizontal wells[J].Journal of Shenzhen University Science and Engineering,2013,30(5):545.[doi:10.3724/SP.J.1249.2013.05545]
[3]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
 Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(5):649.[doi:10.3724/SP.J.1249.2013.06649]
[4]朱世琰,李海涛,孙正丽,等.低渗透气藏分段压裂水平井非稳态产能模型[J].深圳大学学报理工版,2014,31(3):266.[doi:10.3724/SP.J.1249.2014.03266]
 Zhu Shiyan,Li Haitao,Sun Zhengli,et al.Unsteady productivity model of multi-stage fractured horizontal well in low permeability gas reservoir[J].Journal of Shenzhen University Science and Engineering,2014,31(5):266.[doi:10.3724/SP.J.1249.2014.03266]
[5]陈民锋,陈璐,张琪琛,等.低渗透油藏改造后水平井压力分布规律[J].深圳大学学报理工版,2016,33(4):401.[doi:10.3724/SP.J.1249.2016.04401]
 Chen Minfeng,Chen Lu,Zhang Qichen,et al.Field pressure distribution of horizontal wells in low permeable stimulated reservoirs[J].Journal of Shenzhen University Science and Engineering,2016,33(5):401.[doi:10.3724/SP.J.1249.2016.04401]
[6]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(5):98.[doi:10.3724/SP.J.1249.2017.01098]
[7]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
 Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(5):91.[doi:10.3724/SP.J.1249.2017.01091]
[8]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
 ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(5):362.[doi:10.3724/SP.J.1249.2018.04362]
[9]陈民锋,尹承哲,王振鹏,等.直井—水平井组合井网平面井间动用规律[J].深圳大学学报理工版,2018,35(4):368.[doi:10.3724/SP.J.1249.2018.04368]
 CHEN Minfeng,YIN Chengzhe,WANG Zhenpeng,et al.Inter-well production of the horizontal-vertical composed well pattern[J].Journal of Shenzhen University Science and Engineering,2018,35(5):368.[doi:10.3724/SP.J.1249.2018.04368]
[10]刘永辉,艾先婷,罗程程,等.预测水平井携液临界气流速的新模型[J].深圳大学学报理工版,2018,35(6):551.[doi:10.3724/SP.J.1249.2018.06551]
 LIU Yonghui,AI Xianting,LUO Chengcheng,et al.A new model for predicting critical gas velocity ofliquid loading in horizontal well[J].Journal of Shenzhen University Science and Engineering,2018,35(5):551.[doi:10.3724/SP.J.1249.2018.06551]
[11]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
 Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(5):266.[doi:10.3724/SP.J.1249.2015.03266]
[12]朱璇,袁彬,同元辉,等.致密低渗油藏压裂井网气驱深度学习预测模型[J].深圳大学学报理工版,2022,39(5):559.[doi:10.3724/SP.J.1249.2022.05559]
 ZHU Xuan,YUAN Bin,TONG Yuanhui,et al.Deep-learning-based proxy model for forecasting gas flooding performance of fractured well pattern in tight oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2022,39(5):559.[doi:10.3724/SP.J.1249.2022.05559]

备注/Memo

备注/Memo:
Received: 2022- 05-04; Accepted: 2022-06-02; Online (CNKI): 2022-08-08
Foundation: Natural Science Foundation of Shandong Province (ZR2020YQ36)
Corresponding author: Senior engineer ZHONG Anhai. E-mail: zhonganhai@163.com
Citation: ZHONG Anhai, GUO Tiankui. Numerical simulation of multi-cluster proppant distribution in horizontal wells [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 576-583.(in Chinese)
基金项目:山东省自然科学基金资助项目(ZR2020YQ36)
作者简介:钟安海(1976—),中石化胜利油田分公司石油工程技术研究院高级工程师.研究方向:储层压裂酸化研究.E-mail: zhonganhai@163.com
引文:钟安海,郭天魁.水平井多簇支撑剂分布数值模拟[J].深圳大学学报理工版,2022,39(5):576-583.
更新日期/Last Update: 2022-09-30