MA Yun.Effect of TiO2 doping modification on structure and catalytic performance of UiO-66[J].Journal of Shenzhen University Science and Engineering,2022,39(5):497-503.[doi:10.3724/SP.J.1249.2022.05497]





Effect of TiO2 doping modification on structure and catalytic performance of UiO-66
安庆医药高等专科学校药学院,安徽安庆 246052
MA Yun
School of Pharmacy, Anqing Medical College, Anqing 246052, Anhui Province, P. R. China
composite materials UiO-66 TiO2 doping modification catalytic activity visible light
为获得具有可见光响应的高活性光催化剂,利用二氧化钛(TiO2)对UiO-66掺杂改性,通过水热法合成TiO2@UiO-66.采用扫描电子显微镜(scanning electron microscope, SEM)、X射线衍射(X-ray diffraction, XRD)、傅里叶红外光谱分析(Fourier transform infrared spectroscopy, FTIR)和N2吸附-脱附(N2 adsorption-desorption)等手段,考察TiO2掺杂对UiO-66结构和表面形貌的影响.结果表明,所制备样品均为正八面体结构;改性前UiO-66比表面积高达1 270 m2/g,少量TiO2掺杂时,TiO2@UiO-66的比表面积与UiO-66相差无几;TiO2掺杂量增加至15 mmol时,TiO2@UiO-66的比表面积骤减到413 m2/g,TiO2掺杂过多会降低UiO-66的比表面积.以可见光下样品对头孢曲松钠的去除为探针反应考察其催化活性,结果显示,TiO2掺杂量为10 mmol时,可见光照射120 min,TiO2@UiO-66对头孢曲松钠的去除率达到64.86%,是UiO-66的1.28倍.因此,适量掺杂TiO2可以提高UiO-66对头孢曲松钠的去除率.研究可为改性UiO-66光催化剂设计和头孢抗生素污染物的光催化降解提供参考.
In order to obtain a highly active photocatalyst with visible light response, UiO-66 was modified by doping TiO2 and TiO2@UiO-66 was synthesized with the hydrothermal method. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption-desorption were used to investigate the effect of TiO2 doping on the structure and surface morphology of UiO-66. The results showed that all the samples had regular octahedral structure. The specific surface area of UiO-66 was high up to 1 270 m2/g before modification, and the specific surface area of TiO2@UiO-66 was similar to that of UiO-66 with a small amount of TiO2 doping. When the doping amount was increased to 15 mmol, the specific surface area of TiO2@UiO-66 was decreased sharply to 413 m2/g, since excessive TiO2 doping reduced the specific surface area of UiO-66. Removal of ceftriaxone sodium by samples under visible light was used as probe reaction to investigate its catalytic activity. The photocatalytic results showed that the removal rate of ceftriaxone sodium by TiO2@UiO-66 reached 64.86%,which was 1.28 times that of UiO-66, when TiO2 doping amount was 10 mmol and visible light irradiation was 120 min. Therefore, appropriate TiO2 doping can improve the removal rate of UiO-66 to ceftriaxone sodium. This work may provide new insights into the design of modified UiO-66 photocatalyst and the photocatalytic degradation of cephalosporins.


[1] KUBACKA A, MARCOS F, GERARDO C. Advanced nanoarchitectures for solar photocatalytic applications [J]. Chemical Reviews, 2012, 112(3): 1555-1614.
[2] JELINSKA A, BIENKOWSKI K, JADWISZCZAK M, et al. Enhanced photocatalytic water splitting on very thin WO3 films activated by high-temperature annealing [J]. ACS Catalysis, 2018, 8(11): 10573-10580.
[3] WANG Yanyun, ZHAO Shuo, ZHANG Yiwei, et al. Synhesis of graphitic carbon nitride with large specific surface area via copolymerizing with nucleobases for photocatalytic hydrogen generation [J]. Applied Surface Science, 2019, 463: 1-8.
[4] WU Ting, LIU Xiaojuan, LIU Yang, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation [J]. Coordination Chemistry Reviews, 2020, 403: 213097.
[5] VORONTSON A V, SAVINOV E V, DAVYDOV L, et al. Environmental applications of semiconductor photocatalys [J]. Applied Catalysis B: Environmental, 2001, 32: 11-24.
[6] KONSTANTINOU I K, AlBANIS T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:a review [J]. Applied Catalysis B: Environmental, 2004, 49: 1-14.
[7] ALEKSANDRA H, AUTONI W, BARBARA G, et al. Cu- modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1-C3 hydrocarbons and hydrogen [J]. Applied Catalysis B: Environmental, 2013, 140/141: 108-114.
[8] GRABOWSKA E, ZALESKA A, SORGUES S, et al. Modification of titanium(IV) dioxide with small silver nanoparticles: application in photocatalysis [J]. The Journal of Chemical Physics C, 2013, 117(4): 1955-1962.
[9] CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427: 523-527.
[10] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 673-674.
[11] ZHENG Shasha, LI Xinran, YAN Bingyi, et al. Transition-metal (Fe,Co, Ni) based metal-organic frameworks for electrochemical energy storage [J]. Advanced Energy Materials, 2017, 7(18): 1602733.
[12] LI L, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites [J]. Science, 2018, 362(6413): 443-446.
[13] HU P, LIANG X P, YASEEN M, et al. Preparation of highlyhydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment [J]. Chemical Engineering Journal, 2018, 332: 608-618.
[14] ZHU Junjie, WU Linbo, BU Zhiyang, et al. Polyethyleneimine-modified UiO-66-NH2(Zr) metal-organic frameworks: preparation and enhanced CO2 selective adsorption [J]. ACS Omega, 2019, 4(2): 3188-3197.
[15] HUANG Wenyuan, LIU Ning, ZHANG Xiaodong, et al. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light [J]. Applied Surface Science, 2017, 425: 107-116.
[16] LI Xiaofang, MA Dongdong, CAO Changsheng, et al. Inlaying ultrathin bimetallic MOF nanosheets into 3D ordered macroporous hydroxide for superior electrocatalytic oxygen evolution [J]. Small, 2019, 15(35): 1902218.
[17] WU Mingxue, YANG Yingwei. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy [J]. Advanced Materials, 2017, 29(23): 1606134.
[18] GAUTAM S, SINGHAL J, LEE H K, et al. Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations [J]. Materials Today Chemistry, 2022, 23(3): 100647.
[19] SCULLEY J, YUAN D Q, ZHOU H C. The current status of hydrogen storage in metal-organic frameworks-updated [J]. Energy & Environmental Science, 2011, 4(8): 2721-2735.
[20] ALEZI D, BELMABKHOUT Y, SUYETIN M, et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage [J]. Journal of the American Chemical Society, 2015, 137(41): 13308-13318.
[21] SHRIVASTAV V, SUNDRIYAL S, GOEL P, et al. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage [J]. Coordination Chemistry Reviews, 2019, 393: 48-78.
[22] HUANG Lijin, HE Man, CHEN Beibei, et al. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water [J]. Chemosphere, 2018, 199: 435-444.
[23] CRAKE A, CHRISTOFORIDIS K C, GREGG A, et al. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer [J]. Small, 2019, 15(11): 1805473.
[24] 周易,欧阳威龙,王岳军,等.核壳结构NH2-UiO-66@TiO2的制备及其可见光下的甲苯降解性能研究[J].物理化学学报,2021,37(8):107-114.
ZHOU Yi , OUYANG Weilong , WANG Yuejun,et al. Core-shell structured NH2-UiO-66@TiO2 photocatalyst for the degradation of toluene under visible light irradiation [J]. Acta Physico-Chimica Sinica, 2021, 37(8): 107-114.(in Chinese)
[25] ABDI J, YAHYANEZHAD M, SAKHAIE S, et al. Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation [J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103096.
[26] MA Yajuan, TANG Qian, SUN Weiyin, et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration [J]. Applied Catalysis B: Environmental, 2020, 270: 118856.
[27] 马允. 酸促UiO-66的合成及其对废水中头孢抗生素的处理效率[J].中山大学学报自然科学版,2022,61(4):79-84.
MA Yun. Effect of TiO2 doping modification on structure and catalytic performance of UiO-66 [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(4): 79-84.(in Chinese)
[28] WANG Keke, LI Caifeng, LIANG Yuxin, et al. Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes [J]. Chemical Engineering Journa, 2016, 289: 486-493.
[29] JIAO Yang, LIU Yang, ZHU Guanghui, et al. Heat- treatment of defective UiO-66 from modulated synthesis: adsorption and stability studies [J]. The Journal of Physical Chemistry C, 2017, 121(42): 23471-23479.


[1]倪 卓,刘剑洪,魏波,等.PEEK/AS4复合材料微观结构表征[J].深圳大学学报理工版,2007,24(1):47.
 NI Zhuo,LIU Jian-hong,WEI Bo,et al.Microstructural charaterization of Polyetheretherketon/AS4 composites[J].Journal of Shenzhen University Science and Engineering,2007,24(5):47.
 CAO Hui-qun,ZHOU Xiao-ming,LIU Jian-hong,et al.The preparation and characteration of carbon nanotubes assembled with europium oxide[J].Journal of Shenzhen University Science and Engineering,2007,24(5):54.
 NI Zhuo,ZHANG Ping,LIN Yan-ling,et al.Self-repairing behaviours of unsaturated polyester/microcapsule composites[J].Journal of Shenzhen University Science and Engineering,2010,27(5):260.
 GUI Da-yong,HAO Jing-feng,LAI Yu-li,et al.Modification of epoxy resin with diphenyl silanediol and its thermal stability[J].Journal of Shenzhen University Science and Engineering,2011,28(5):507.
 XU Xin-tong,ZHAI Jian-pang,FU Ling,et al.Synthesis and optical characterization of Se8ring incorporated inside the cages of CHA crystals[J].Journal of Shenzhen University Science and Engineering,2011,28(5):518.
 SONG Yuan-jia,ZHANG Wei,YANG Zheng-wei,et al.Debond defect detection in shell of solid rocket motor by thermal wave nondestructive testing[J].Journal of Shenzhen University Science and Engineering,2012,29(5):252.[doi:10.3724/SP.J.1249.2012.03252]
 NI Zhuo,WANG Ying,HUA Wen-yu,et al.Thermal stability of ?PEEK/HA biological composite materials[J].Journal of Shenzhen University Science and Engineering,2012,29(5):521.[doi:10.3724/SP.J.1249.2012.06521]
 Ni Zhuo,Liu Shide,Wang Ying,et al.Influence of 3T3 cells for PEEK-HA composite[J].Journal of Shenzhen University Science and Engineering,2013,30(5):392.[doi:10.3724/SP.J.1249.2013.04392]
 Ni Zhuo,Wang Ying,Wang Shuang,et al.Influence of PEEK-HA composites on MG-63 cells[J].Journal of Shenzhen University Science and Engineering,2014,31(5):258.[doi:10.3724/SP.J.1249.2014.03258]
 Luo Yuanchun,Zhu Guangming,Tang Jiaoning,et al.Influence of epoxy resin and its curing agent on the properties of biomicrocapsule[J].Journal of Shenzhen University Science and Engineering,2015,32(5):371.[doi:10.3724/SP.J.1249.2015.04371]


Received: 2021- 09-29; Accepted: 2022-03-20; Online (CNKI): 2022- 09- 07
Foundation: Natural Science Foundation of Anhui Province (KJ2020A0885);Anhui Province Outstanding Talents Cultivation Funding Project (gxgnfx2020140); Key Scientific Research Project of Anqing Medical College (ZR2019002)
Corresponding author: Associate professor MA Yun. E-mail: mayun-my@163.com
Citation: MA Yun. Effect of TiO2 doping modification on structure and catalytic performance of UiO-66 [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 497-503.(in Chinese)
作者简介:马允(1980—),安庆医药高等专科学校副教授.研究方向:催化新材料与新术.E-mail: mayun-my@163.com
更新日期/Last Update: 2022-09-30