[1]曹可,赖强,赖聪.含多吸引子的忆阻混沌系统的分析与实现[J].深圳大学学报理工版,2022,39(4):480-488.[doi:10.3724/SP.J.1249.2022.04480]
 CAO Ke,LAI Qiang,and LAI Cong.Analysis and implementation of memristive chaotic system with multiple attractors[J].Journal of Shenzhen University Science and Engineering,2022,39(4):480-488.[doi:10.3724/SP.J.1249.2022.04480]
点击复制

含多吸引子的忆阻混沌系统的分析与实现()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第4期
页码:
480-488
栏目:
电子与信息科学
出版日期:
2022-07-12

文章信息/Info

Title:
Analysis and implementation of memristive chaotic system with multiple attractors
文章编号:
202204016
作者:
曹可 赖强 赖聪
华东交通大学电气与自动化工程学院,江西南昌 330013
Author(s):
CAO Ke LAI Qiang and LAI Cong
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi Province, P. R. China
关键词:
混沌忆阻Sprott-J混沌系统反倍周期分岔多吸引子分岔图Lyapunov指数谱电路实现
Keywords:
chaos memristive Sprott-J chaotic system inverse period-doubling bifurcation multiple attractors bifurcation diagrams Lyapunov exponent spectrum circuit implementation
分类号:
TM132;O415.5
DOI:
10.3724/SP.J.1249.2022.04480
文献标志码:
A
摘要:
采用磁控忆阻器作为Sprott-J系统的负反馈,构造了一个新的具有无限平衡点的4维忆阻混沌系统,将所有的非线性项都集中在一个方程中.分析系统的耗散性、平衡点集的存在性和稳定性,以及Lyapunov指数和维数,利用分岔图和Lyapunov指数谱观察并研究该混沌系统的动力学特征.Matlab数值仿真结果表明,新系统是耗散系统且具有1个线平衡点集.动力学分析结果表明,新忆阻Sprott-J系统在改变参数时存在反倍周期分岔现象,改变初始条件时,系统出现多吸引子共存现象.研究系统在不同初始条件和系统参数下的分岔特性,得到系统混沌与混沌、混沌与周期、周期与周期共存的多吸引子特性.采用Multisim软件对系统进行电路模拟及数值仿真,结果表明,数值仿真结果与相应的电路结果相吻合,验证了新忆阻Sprott-J混沌系统的物理可行性.研究为忆阻Sprott-J混沌系统在图像加密领域的应用提供了理论基础.
Abstract:
A new four-dimensional memristive chaotic system with infinite equilibrium points is constructed by introducing the magnetically controlled memristor as the negative feedback of Sprott-J system. All non-linear terms of the system are concentrated in a single equation. The dissipation of the system, the existence and stability of the equilibrium point set and the Lyapunov exponent and dimension of the system are analyzed. The dynamic characteristics of the chaotic system are studied by using bifurcation diagram and Lyapunov exponent spectrum. The numerical simulation of Matlab show that the new system is a dissipative system and has a set of line equilibrium points. The dynamic analysis results show that the new memristive Sprott-J system has the phenomenon of inverse period-doubling bifurcation when changing the parameters, and the coexistence of multiple attractors when changing the initial conditions. The chaotic bifurcation characteristics of the system under different initial conditions and system parameters are studied. The multiple attractor characteristics of chaos and chaos, chaos and period, period and period coexistence are obtained. The circuit implementation and numerical simulation of the system are carried out by using Multisim software. The results show that the numerical simulation is consistent with the corresponding circuit results, which verifies the physical feasibility of the new memristive Sprott-J chaotic system, and provides a theoretical basis for the application of the system in the field of image encryption.

参考文献/References:

[1] LIN Hairong, WANG Chunhua, YAO Wei, et al. Chaotic dynamics in a neural network with different types of external stimuli [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105390.
[2] PANO-AZUCENA A D, RANGEL-MAGDALENO J de J, TLELO-CUAUTLE E, et al. Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators [J]. Nonlinear Dynamics, 2017, 87(4): 2203-2217.
[3] HUA Zhongyun, ZHOU Yicong. Image encryption using 2D logistic-adjusted-sine map [J]. Information Sciences, 2016, 339: 237-253.
[4] LAI Qiang, WAN Zhiqiang, ZHANG Hui, et al. Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption [J/OL]. [2021-12-30]. IEEE Transactions on Neural Networks and Learning Systems.http://pubmed-ncbi-nlm-nih-gov-s.caas.cn/35143405.
[5] LAI Qiang, NOROUZI B, LIU Feng. Dynamic analysis, circuit realization, control design and image encryption application of an extended L? system with coexisting attractors [J]. Chaos, Solitons & Fractals, 2018, 114: 230-245.
[6] 吴冬梅,郝凤鸣,蒋国平.基于多智能体混沌鸟群算法的机构优化[J].信息与控制,2021,50(4):449-458.
WU Dongmei,HAO Fengming,JIANG Guoping.Mechanism optimization based on multi-agent chaos bird swarm algorithm [J].Information and Control, 2021, 50(4): 449-458.(in Chinese)
[7] TAHIR M, TUBAISHAT A, AI-OBEIDAT F, et al. A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare [J/OL]. (2020-09-18)[2021-12-30]. Neural Computing and Applications. http://doi.org/10.1007/s00521-020-05347-y.
[8] 李蛟,胡黄水,赵宏伟,等.基于混沌遗传算法的无线传感器网络改进LEACH算法[J].吉林大学学报理学版,2021,59(4):950-955.
LI Jiao, HU Huangshui, ZHAO Hongwei, et al. Improve LEACH algorithm for wireless sensor networks based on chaotic genetic algorithm [J]. Journal of Jilin University Science Edition, 2021, 59(4): 950-955.(in Chinese)
[9] CHUA L. Memristor-the missing circuit element [J]. IEEE Transactions on circuit theory, 1971, 18(5): 507-519.
[10] STRUKOV D B, SNIDER G S, STEWARD D R, et al. The missing memristor found [J]. Nature, 2008, 453(7191): 80-83.
[11] MUTHUSWAMY B, KOKATE P P. Memristor-based chaotic circuits [J]. IETE Technical Review, 2009, 26(6): 417-429.
[12] LAI Qiang, WAN Zhiqiang, KUATE P D K, et al. Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89: 105341.
[13] XU Birong, WANG Guangyi, IU H H C, et al. A memristor-meminductor-based chaotic system with abundant dynamical behaviors [J]. Nonlinear Dynamics, 2019, 96(1): 765-788.
[14] LI Chuang, MIN Fuhong, LI Chunbiao. Multiple coexisting attractors of the serial-parallel memristor-based chaotic system and its adaptive generalized synchronization [J]. Nonlinear Dynamics, 2018, 94(4): 2785-2806.
[15] 阮静雅,孙克辉,牟俊.基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J].物理学报,2016,65(19):25-35.
RUAN Jingya, SUN Kehui, MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation [J]. Acta Physica Sinica, 2016, 65(19): 25-35.(in Chinese)
[16] MA Jun, ZHOU Ping, AHMAD B, et al. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor [J]. PloS One, 2018, 13(1): e0191120.
[17] LAI Qiang, WAN Zhiqiang, KUATE P D K. Modelling and circuit realization of a new no-equilibrium chaotic system with hidden attractor and coexisting attractors [J]. Electronics Letters, 2020, 56(20): 1044-1046.
[18] LAI Qiang. A unified chaotic system with various coexisting attractors [J]. International Journal of Bifurcation and Chaos, 2021, 31(1): 2150013.
[19] 闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J].深圳大学学报理工版,2021,38(6):649-657.
YAN Shaohui, WANG Ertong, SUN Xi, et al. A chaotic system with attractor coexistence and its synchronization circuit implementation [J].Journal of Shenzhen University Science and Engineering, 2021, 38(6): 649-657.(in Chinese)
[20] LI Chunbiao, SPROTT J C. Coexisting hidden attractors in a 4-D simplified Lorenz system [J]. International Journal of Bifurcation and Chaos, 2014, 24(3): 1450034.
[21] HENS C, DANA S K, FEUDEL U. Extreme multistability: attractor manipulation and robustness [J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053112.
[22] JAFARI S, AHMADI A, KHALAF A J M, et al. A new hidden chaotic attractor with extreme multi-stability [J]. AEU-International Journal of Electronics and Communications, 2018, 89: 131-135.
[23] 郑广超,刘崇新,王琰.一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步[J].物理学报,2018,67(5):43-50.
ZHENG Guangchao, LIU Chongxin, WANG Yan, et al. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors [J].Acta Physica Sinica, 2018, 67(5): 43-50.(in Chinese)
[24] DANG Xiaoyu, LI Chunbiao, BAO Bocheng, et al. Complex transient dynamics of hidden attractors in a simple 4D system [J]. Chinese Physics B, 2015, 24(5): 050503.
[25] SPROTT J C. Some simple chaotic flows [J]. Physical Review E, 1994, 50(2): R647.
[26] CHEN Jianyun, MIN Fuhong, LV Yanmin, et al. Projective synchronization for heterogeneous active magnetic controlled memristor-based chaotic systems [C]// The 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science. Wuxi, China: IEEE, 2018: 64-67.
[27] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D: nonlinear phenomena, 1985, 16(3): 285-317.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(4):327.
[2]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(4):469.[doi:10.3724/SP.J.1249.2013.05469]
[3]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(4):475.[doi:10.3724/SP.J.1249.2013.05475]
[4]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(4):626.[doi:10.3724/SP.J.1249.2014.06626]
[5]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(4):43.
[6]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(4):51.[doi:10.3724/SP.J.1249.2020.01051]
[7]王驿宣,等.色散反馈微腔激光器产生无时延特征宽带混沌[J].深圳大学学报理工版,2021,38(3):252.[doi:10.3724/SP.J.1249.2021.03252]
 WANG Yixuan,WANG Daming,et al.Generation of wideband chaos without time delay signature using the microlaser with dispersive optical feedback[J].Journal of Shenzhen University Science and Engineering,2021,38(4):252.[doi:10.3724/SP.J.1249.2021.03252]
[8]闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J].深圳大学学报理工版,2021,38(6):649.[doi:10.3724/SP.J.1249.2021.06649]
 YAN Shaohui,WANG Ertong,et al.A chaotic system with attractor coexistence and its synchronization circuit implementation[J].Journal of Shenzhen University Science and Engineering,2021,38(4):649.[doi:10.3724/SP.J.1249.2021.06649]

备注/Memo

备注/Memo:
Received: 2021-12-04; Accepted: 2022-01-03;
Online (CNKI): 2022- 06-30
Foundation: National Natural Science Foundation of China (61961019)
Corresponding author: Associate professor LAI Qiang. E-mail: laiqiang87@126.com
Citation: CAO Ke, LAI Qiang, LAI Cong. Analysis and implementation of memristive chaotic system with multiple attractors [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(4): 480-488.(in Chinese)
基金项目:国家自然科学基金资助项目(61961019)
作者简介:曹可(2000—),华东交通大学本科生.研究方向:混沌理论与应用.E-mail: caoke200820@126.com
引文:曹可,赖强,赖聪.含多吸引子的忆阻混沌系统的分析与实现[J].深圳大学学报理工版,2022,39(4):480-488.
更新日期/Last Update: 2022-07-30