[1]郑麦杰,陈振宽,王聪颖,等.非线性超快成像技术的时间分辨率探究[J].深圳大学学报理工版,2022,39(4):383-389.[doi:10.3724/SP.J.1249.2022.04383]
 ZHENG Maijie,CHEN Zhenkuan,WANG Congying,et al.The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics[J].Journal of Shenzhen University Science and Engineering,2022,39(4):383-389.[doi:10.3724/SP.J.1249.2022.04383]
点击复制

非线性超快成像技术的时间分辨率探究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第4期
页码:
383-389
栏目:
光电工程
出版日期:
2022-07-12

文章信息/Info

Title:
The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics
文章编号:
202204004
作者:
郑麦杰陈振宽王聪颖曾选科文侨蔡懿徐世祥李景镇
深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室,深圳市微纳光子信息技术重点实验室,广东深圳 518060
Author(s):
ZHENG Maijie CHEN Zhenkuan WANG Congying ZENG Xuanke WEN Qiao CAI Yi XU Shixiang and LI Jingzhen
College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
关键词:
应用物理学超快成像超短激光脉冲光开关曝光时间时间分辨率光参量放大
Keywords:
applied physics ultra-fast imaging ultrashort laser pulses optical gating exposure time temporal resolution optical parametric amplification
分类号:
O59;O437.4
DOI:
10.3724/SP.J.1249.2022.04383
文献标志码:
A
摘要:
理论研究了基于非线性光学开关效应取样的超快成像技术.推导了基于倍频、光克尔效应及光参量放大等非线性过程取样方式下的开关函数表达式.提出等效曝光时间概念,用于准确描述基于不同非线性光学取样方式超快成像的实际时间分辨能力,对以超快旋转光场为目标物的超快成像过程进行模拟.结果表明,基于倍频的超快成像等效曝光时间与取样激光脉冲宽度相当;基于光克尔效应的超快成像等效曝光时间是取样脉宽的0.7倍,而基于光参量放大的等效曝光时间与取样脉宽和增益大小都有关.增益越高,等效曝光时间越短,超快测量时间分辨越高.当增益为1 000时,等效曝光时间降低至取样脉宽的一半.研究结果为提升现有非线性光开关超快成像技术的时间分辨能力提供一条有效技术途径.
Abstract:
We theoretically study some ultra-fast imaging technologies based on nonlinear optical switching effect sampling, and derive the expressions of switching functions based on nonlinear process sampling methods such as second harmonic (SH), optical Kerr effect and optical parametric amplification (OPA). For the first time, we propose a new concept, named equivalent exposure time (EET), which is used to describe accurately the actual gating time during ultrafast imaging. By using the ultra-fast rotating light fields as the targets, the simulations show that the EET of the ultrafast imaging based on SH is equivalent to the sampling laser pulse width, but the EET of the ultrafast imaging based on optical Kerr effect is 0.7 times of the sampling pulse width, while for the ultrafast imaging based on OPA, the EET depends on both the sampling pulse width and the gain. The higher the gain is, the shorter the EET, thus the higher the temporal resolution. The EET is reduced to half of the sampling pulse width when the OPA gain is 1 000. This research provides an effective way to improve the temporal resolution of the ultrafast imaging via the nonlinear optical switches.

参考文献/References:

[1] GARCIA-LECHUGA M,SIEGEL J,HERNANDEZ-RUEDA J,et al.Femtosecond laser ablation of dielectric materials in the optical breakdown regime: expansion of a transparent shell [J]. Applied Physics Letters, 2014, 105(11): 112902.
[2] BETTI R, HURRICANE O A. Corrigendum: inertial-confinement fusion with lasers [J]. Nature Physics, 2016, 12(7): 435-448.
[3] COUAIRON A, MYSYROWICZ A. Femtosecond lamentation in transparent media [J]. Physics Reports, 2007,441(2/3/4): 47-189.
[4] WONG C Y, ALVERY R M, TURNER D B, et al.Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting [J]. Nature Chemistry, 2012, 4(5): 396-404.
[5] ZHANG Nan, ZHU Xiaonon, YANG Jianjun, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum [J]. Physical Review Letters, 2007, 99(16): 167602.
[6] NAKAGAWA K, IWASAKI A, OISHI Y, et al. Sequentially timed all-optical mapping photography (STAMP) [J].Nature Photonics, 2014, 8: 695-700.
[7] HERINK G,JALALI B,ROPERS C,et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90?MHz frame rate [J]. Nature Photonics, 2016, 10: 321-326.
[8] MATLIS N H, REED S, BULANOV S S, et al. Snapshots of laser wake fields [J]. Nature Physics, 2006, 2(22): 749-753.
[9] EHN A, BOOD J, LI Z, et al.FRAME: femtosecond videography for atomic and molecular dynamics [J]. Light: Science & Applications, 2017, 6(1): e17045.
[10] HUANG Hongyi, CHENG Zhenjia, YANG Yang, et al. Single-shot ultrafast sequential holographic imaging with high temporal resolution and a large field of view [J]. Optics Letters, 2019, 44(19): 4885-4888.
[11] GAO Liang, LIANG Jinyang, WANG Lihong, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second [J]. Nature, 2015, 516: 74-77.
[12] YANG Chengshuai, QI Dalong, WANG Xing, et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm [J]. Optica, 2018, 5: 147-151.
[13] LU Yu,WONG T W,CHEN Feng,et al.Compressed ultrafast spectral-temporal photography [J]. Physical Review Letters, 2019, 122(19): 193904.
[14] ZHENG Shuiqing, CAI Yi, PAN Xingjian, et al. Two-step phase-shifting SPIDER [J]. Scientific Reports, 2016, 6: 33837.
[15] ZENG Xuanke, ZHENG Shuiqing, CAI Yi, et al. High- spatial-resolution ultrafast framing imaging up to 15 trillion frames per second by optical parametric amplification [J].Advanced Photonics, 2020, 2(5): 056002.
[16] ZENG Xuanke, ZHENG Shuiqing, CAI Yi, et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region [J]. High Power Laser Science and Engineering, 2020, 8(1): 16-22.
[17] KANE D J,TREBINO R.Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating [J].Optics Letters, 1993, 18(10): 823-825.
[18] VONDERLINDE D, SOKOLWSKITINTEN K, BIALKO- WSKI J. Laser-solid interaction in the femtosecond time regime [J]. Applied Surface Science, 1997, 109/110: 1-10.
[19] CERULLO G, De SILVESTRI S. Ultrafast optical parametric amplifiers [J]. Review of Scientific Instruments,2003, 74(1): 1-18.
[20] MACDONALD M P, PATERSON L, VOLKE-SEPULVEDA K, et al. Creation and manipulation of three-dimensional optically trapped structures [J]. Science, 2002, 296(5570): 1101-1103.
[21] CAMPBELL R, OPPO G. Stationary and traveling solitons via local dissipation in Bose-Einstein condensates in ring optical lattices [J]. Physical Review A, 2016, 94(4): 043626.
[22] YAMANE K, SAKAMOTO N, MURAKAMI R M, et al. Picosecond rotation of a ring-shaped optical lattice by using a chirped vortex-pulse pair [J]. Optics Letters, 2016, 41(19): 4597-4600.
[23] DIELS C, RUDOLPH W. Ultrashort laser pulse phenomena [M]. Pittsburgh, USA: Academic Press, 2006.

备注/Memo

备注/Memo:
Received: 2022-01-16; Accepted: 2022-03-02; Online (CNKI): 2022-03-29
Foundation: National Natural Science Foundation of China (92050203, 61925507, 12174264, 12004261, 62075138, 61827815); Natural Science Foundation of Guangdong Province (2020A1515010541)
Corresponding author: Professor XU Shixiang. E-mail: shxxu@szu.edu.cn; Lecturer CAI Yi. E-mail: caiyi@szu.edu.cn
Citation: ZHENG Maijie, CHEN Zhenkuan, WANG Congying, et al. The temporal resolutions of the ultrafast imaging technologies based on nonlinear optics [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(4): 383-389.(in Chinese)
基金项目:国家自然科学基金资助项目(92050203,61925507,12174264,12004261,62075138,61827815);广东省自然科学基金资助项目(2020A1515010541);深圳市基础研究计划资助项目(JCYJ20200109105606426,JCYJ 20190808164007485,JCYJ20190808121817100,JCYJ201 90808143419622,JCYJ20190808115601653)
作者简介:郑麦杰(1996—),深圳大学硕士研究生.研究方向:超快旋转光场的产生与应用.E-mail: 1900453053@email.szu.edu.cn
引 文:引用格式:郑麦杰,陈振宽,王聪颖,等.非线性超快成像技术的时间分辨率探究[J].深圳大学学报理工版,2022,39(4):383-389.
更新日期/Last Update: 2022-07-30