YANG Lei,WANG Yun,DENG Fang,et al.Circular RNAs related to skeletal muscle atrophy in diabetic mouse model[J].Journal of Shenzhen University Science and Engineering,2022,39(3):262-270.[doi:10.3724/SP.J.1249.2022.03262]





Circular RNAs related to skeletal muscle atrophy in diabetic mouse model
1)深圳大学生命与海洋科学学院,广东深圳 518071
2)韩山师范学院生命科学与食品工程学院,广东潮州 521041
YANG Lei1 WANG Yun1 DENG Fang1 XU Te1 GOU Deming1 ZHOU Wei1 HU Zhangli1 and ZOU Xianghui2
1) College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, Guangdong Province, P. R. China
2) College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong Province, P. R. China
bioinformatics diabetes molecular pathology muscle atrophy biomarkers circular ribonucleic acids (circRNAs)
骨骼肌萎缩是糖尿病患者中、晚期严重并发症之一,为研究其分子发病机制,利用链脲佐菌素诱导构建小鼠1型糖尿病模型,通过高通量测序技术,调查与糖尿病肌萎缩病变相关的环状核糖核酸(circular ribonucleic acid, circRNA)表达谱,并利用生物信息分析软件探究circRNA在糖尿病骨骼肌萎缩病变中的可能作用.结果显示,与正常同基因背景小鼠的同类组织相比,糖尿病鼠的腓肠肌呈现:① 肌纤维面积明显减小,运动功能下降;② 含有1 403个与1型糖尿病发生发展相关的差异表达circRNA,其中,690个上调和713个下调;③ 通过基因本体、京都基因和基因组百科全书的功能富集分析显示,差异表达的候选circRNA亲本基因主要富集于转录调节生物学过程、细胞质成分和蛋白质结合分子功能等方面,以及促分裂原活化蛋白激酶信号通路、泛素介导的蛋白降解、叉头盒蛋白O通路与糖尿病肌萎缩相关的信号通路等.通过数据库信息和生物信息分析技术,预测与肌萎缩基因MuRF1相结合的小RNA(mirco RNA,miRNA),并挖掘出可调控它们表达的功能circRNA,构建了circRNA-miRNA-mRNA的潜在分子调控反应轴和互作网络.研究结果表明,与肌萎缩相关的circRNA在糖尿病发病中具有调控关键分子的潜能.
Skeletal muscle atrophy is one of the serious complications of diabetes mellitus, but its molecular pathogenesis remains unclear. In this study, the type 1 diabetes mellitus of mouse model was induced by intraperitoneal injection with streptozotocin, and high-throughput sequencing was used to investigate the expression profile of circular ribonucleic acids (circRNAs) associated with diabetic muscular atrophy in this model. The roles of circRNA during diabetic skeletal muscle atrophy were explored by using bioinformatics analysis. The profiles of circRNA in gastrocnemius muscle of streptozotocin-induced diabetic mice were detected. Results showed that, compared with the same tissue of normal isogenic background mice, the gastrocnemius muscle of diabetic mice showed: (a) the areas of muscle fiber were significantly reduced, and the grasping power and motor function were decreased; (b) there were 1 403 differentially expressed circRNAs in skeletal muscles of diabetes model, of which 690 were up-regulated and 713 were down-regulated; and (c) these disease related candidate circRNAs matched parent genes were revealed by the functional enrichment analyses of gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG). The most enriched GO terms were "transcriptional regulation", "cytoplasmic components" and "protein binding". The KEGG enriched signaling pathways were "mitogen-activated protein kinase", "ubiquitin-mediated proteolysis", "forkhead box protein O" and others related to muscular atrophy of diabetics. Using databases and bioinformatic analysis, downstream effectors-micro RNAs binding to MuRF1 (a reported muscular dystrophy gene) and their upstream regulators-circRNAs were discovered. Thus, the potential molecular response axis and interaction network of circRNA-miRNA-mRNA for muscular atrophy of diabetes were constructed. The results suggest that circRNAs related to muscle atrophy have potential to regulate key molecules in pathogenesis of diabetes.


[1] MOLINARO R, DAUSCHER C. Complications resulting from uncontrolled diabetes [J]. MLO: Medical Laboratory Observer, 2017, 49(2): 20-22.
[2] MONACO C M F, PERRY C G R, HAWKE T J. Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder [J]. Current Opinion in Neurology, 2017, 30(5): 545-552.
[3] JAMES H A, O’NEILL B T, NAIR K S. Insulin regulation of proteostasis and clinical implications [J]. Cell Metabolism, 2017, 26(2): 310-323.
[4] O’NEILL B T, LEE K Y, KLAUS K, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis [J]. The Journal of Clinical Investigation, 2016, 126(9): 3433-3446.
[5] MORI H, KURODA A, ARAKI M, et al. Advanced glycation end-products are a risk for muscle weakness in Japanese patients with type 1 diabetes [J]. Journal of Diabetes Investigation, 2017, 8(3): 377-382.
[6] BONALDO P, SANDRI M. Cellular and molecular mechanisms of muscle atrophy [J]. Disease Models & Mechanisms, 2013, 6(1): 25-39.
[7] ZHANG Heda, JIANG Linhong, SUN Dawei, et al. Circ-RNA: a novel type of biomarker for cancer [J]. Breast Cancer, 2018, 25(1): 1-7.
[8] KUMAR L, SHAMSUZZAMA, HAQUE R, et al. Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases [J]. Molecular Neurobiology, 2017, 54(9): 7224-7234.
[9] LI Lianju, HUANG Qing, PAN Haifeng, et al. Circular RNAs and systemic lupus erythematosus [J]. Experimental Cell Research, 2016, 346(2): 248-254.
[10] VAUSORT M, SALGADO-SOMOZA A, ZHANG Lu, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction [J]. Journal of the American College of Cardiology, 2016, 68(11): 1247-1248.
[11] SALZMAN, J. Circular RNA expression: its potential regulation and function [J]. Trends in Genetics, 2016, 32(5): 309-316.
[12] LI HENG, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2009, 25(14): 1754-1760.
[13] MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature, 2013, 495(7441): 333-338.
[14] GAO Yuan, ZHANG Jinyang, ZHAO Fangqing. Circular RNA identification based on multiple seed matching [J]. Briefings in Bioinformatics, 2018, 19(5): 803-810.
[15] LI Yan, ZHENG Qiupeng, BAO Chunyang, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis [J]. Cell Research, 2015, 25(8): 981-984.
[16] RYU Y, LEE D, JUNG S H, et al. Sabinene prevents skeletal muscle atrophy by inhibiting the MAPK-MuRF-1 pathway in rats [J]. International Journal of Molecular Sciences, 2019, 20(19): 1-14.
[17] O’NEILL B T, BHARDWAJ G, PENNIMAN C M, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy [J]. Diabetes, 2019, 68(3): 556-570.
[18] SEXTON W L, POOLE D C, MATHIEU-COSTELLO O. Microcirculatory structure-function relationships in skeletal muscle of diabetic rats [J]. The American Journal of Physiology, 1994, 266(4): H1502-H1511.
[19] ARAGNO M, MASTROCOLA R, CATALANO M G, et al. Oxidative stress impairs skeletal muscle repair in diabetic rats [J]. Diabetes, 2004, 53(4): 1082-1088.
[20] KRAUSE M P, AL-SAJEE D, D’SOUZA D M, et al. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle [J]. PLoS One, 2013, 8(8): 1-13.
[21] FUJIMAKI S, WAKABAYASHI T, ASASHIMA M, et al. Treadmill running induces satellite cell activation in diabetic mice [J]. Biochemistry and Biophysics Reports, 2016, 8(1): 6-13.
[22] LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis [J]. Molecular Cell, 2017, 66(1): 22-37.
[23] LI Hui, WEI Xuefeng, YANG Jiameng, et al. CircFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a [J]. Molecular Therapy, 2018, 11(1): 272-283.
[24] SUZUKI H, AOKI Y, KAMEYAMA T, et al. Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot [J]. International Journal of Molecular Sciences, 2016, 17(10): 1-16
[25] ROSSI F, LEGNINI I, MEGIORNI F, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma [J]. Oncogene, 2019, 38(20): 3843-3854.
[26] SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy [J]. The FEBS Journal, 2013, 280(17): 4294-4314.
[27] SACHECK J M, HYATT J P, RAFFAELLO A, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases [J]. FASEB Journal, 2007, 21(1): 140-155.
[28] SANDRI M. Signaling in muscle atrophy and hypertrophy [J]. Physiology, 2008, 23(1): 160-170.
[29] CENTNER T, YANO J, KIMURA E, et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain [J]. Journal of Molecular Biology, 2001, 306(4): 717-726.
[30] BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy [J]. Science, 2001, 294(5547): 1704-1708.
[31] TAILLANDIER D, POLGE C. Skeletal muscle atrogenes: from rodent models to human pathologies [J]. Biochimie, 2019, 166(1): 251-269.


[1]夏立新,闫浩,汤慕瑾,等.花生过敏原Ara h2与Ara h6的生物信息学比较研究[J].深圳大学学报理工版,2010,27(2):241.
 XIA Li-xin,YAN Hao,TANG Mu-jin,et al.Bioinformatics comparison of peanut allergen Ara h2 and Ara h6[J].Journal of Shenzhen University Science and Engineering,2010,27(3):241.
 WANG Jing-feng,FU Jia,XU Lei-lei,et al.Involvement of the PI3K/Akt pathway in the hypoglycemic effects of sea cucumber Apostichopus japonicas in diabetic rats[J].Journal of Shenzhen University Science and Engineering,2011,28(3):172.
 TANG Yu-lin,CAO Yan,OU Zhong-hua,et al.Regulatable gene expression controlled by the promoter of Sali3-2 under different abiotic stresses[J].Journal of Shenzhen University Science and Engineering,2012,29(3):73.[doi:10.3724/SP.J.1249.2012.01073]
 BI De,XIAO Hua-jun,ZHOU Cui-hong,et al.Bioinformatic analysis of ?cardiac and pulmonary hypoxia[J].Journal of Shenzhen University Science and Engineering,2012,29(3):541.[doi:10.3724/SP.J.1249.2012.06541]
 Hu Shiwei,Wang Jingfeng,Xu Leilei,et al.Mechanism of eicosapentaenoic acid-enriched phosphatidylcholine isolated from sea cucumber on anti-hyperglycemia[J].Journal of Shenzhen University Science and Engineering,2013,30(3):349.[doi:10.3724/SP.J.1249.2013.04349]
 Chen Mengzhu,Wang Xiujie,and Xia Lixin.Comparison of alternative splicing in lung adenocarcinoma and lung squamous carcinoma[J].Journal of Shenzhen University Science and Engineering,2017,34(3):33.[doi:10.3724/SP.J.1249.2017.01033]
 LOU Sulin,ZHU Xiulan,ZENG Zhiyong,et al.Bioinformatics analysis of Dunaliella microRNAs by high-throughput sequencing[J].Journal of Shenzhen University Science and Engineering,2018,35(3):331.[doi:10.3724/SP.J.1249.2018.04331]
[8]张尉欣,刘阳,刘 帅,等.镉胁迫下菜心的转录组分析[J].深圳大学学报理工版,2018,35(5):543.[doi:10.3724/SP.J.1249.2018.05543]
 ZHANG Weixin,LIU Yang,LIU Shuai,et al.Transcriptome analysis of Brassica rapa ssp. chinensis var. parachinensis under cadmium stress[J].Journal of Shenzhen University Science and Engineering,2018,35(3):543.[doi:10.3724/SP.J.1249.2018.05543]
 ZHONG Shan,WANG Yun,et al.The prediction of molecular functions for three novel miRNAs in esophageal squamous cell carcinoma[J].Journal of Shenzhen University Science and Engineering,2019,36(3):347.[doi:10.3724/SP.J.1249.2019.04347]
 XU Zhouheng,ZHU Yingli,SUN Mengfei,et al.Comparative transcriptomic analysis of mouse striatum and retina[J].Journal of Shenzhen University Science and Engineering,2020,37(3):17.[doi:10.3724/SP.J.1249.2020.01017]


Received: 2021-06-19; Revised: 2022-03-11; Accepted: 2022-03-23; Online (CNKI): 2022-04-21
Foundation: National Key R & D Program of China (2016YFC1304000); Shenzhen Natural Science Foundation Sustainable Development Project (KCXFZ202002011006448); Shenzhen Basic Research Foundation (JCYJ20190808122413582)
Corresponding author: Professor WANG Yun.E-mail: yunw@szu.edu.cn
Citation: YANG Lei, WANG Yun, DENG Fang, et al. Circular RNAs related to skeletal muscle atrophy in diabetic mouse model [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(3): 262-270.(in Chinese)
基金项目:国家科技部重点研发计划资助项目 (2016YFC1304000); 深圳市自然科学基金可持续发展专项 (KCXFZ202002011006448); 深圳市自然科学基金基础研究项目(JCYJ20190808122413582)
作者简介:杨雷(1990—),深圳大学博士后研究人员.研究方向:慢病早期诊断与防治.E-mail: aleia@foxmail.com
更新日期/Last Update: 2022-05-30