[1]郭天魁,孙悦铭,刘学伟,等.页岩水平井多级分段压裂物理模拟试验[J].深圳大学学报理工版,2022,39(2):111-118.[doi:10.3724/SP.J.1249.2022.02111]
 GUO Tiankui,SUN Yueming,LIU Xuewei,et al.Physical simulation test of multi-stage staged fracturing for shale horizontal wells[J].Journal of Shenzhen University Science and Engineering,2022,39(2):111-118.[doi:10.3724/SP.J.1249.2022.02111]
点击复制

页岩水平井多级分段压裂物理模拟试验()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第2期
页码:
111-118
栏目:
环境与能源
出版日期:
2022-03-15

文章信息/Info

Title:
Physical simulation test of multi-stage staged fracturing for shale horizontal wells
文章编号:
202202001
作者:
郭天魁1 孙悦铭1 刘学伟2 陈铭1 刘晓强1
1)中国石油大学(华东)石油工程学院,山东青岛 266580
2)中国石油大港油田分公司石油工程研究院,天津 300280
Author(s):
GUO Tiankui1 SUN Yueming1 LIU Xuewei2 CHEN Ming1 and LIU Xiaoqiang1
1) School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P. R. China
2) China Petroleum Engineering Research Institute of Dagang Oilfield Company, PetroChina, Tianjin 300280, P. R. China
关键词:
油田开发页岩储层提高采收率水平井分段压裂裂缝扩展诱导应力物理模拟试验
Keywords:
oilfield development shale reservoir enhanced oil recovery staged fracturing of horizontal well fracture propagation induced stress physical simulation test
分类号:
TE357
DOI:
10.3724/SP.J.1249.2022.02111
文献标志码:
A
摘要:
为明确地应力差、排量以及压裂级数对页岩水平井分段压裂裂缝扩展的影响规律,基于真三轴水力压裂试验系统,以露头页岩试样(300 mm×300 mm×300 mm)为研究对象,结合分段压裂裂缝诱导应力检测和水力压裂试验后试件裂缝三维形态结构新方法,在最大水平应力 > 垂直应力 > 最小水平应力条件下,开展页岩露头水平井多级压裂试验研究,探究地应力差、泵注排量和压裂级数对页岩水平井分段多级压裂裂缝扩展的影响规律.研究表明:由于上覆应力低于最大水平主应力,且水平应力差(数值等于最大水平应力减去最小水平应力)不变,上覆应力的减小易导致层理缝的开启;水平应力差越大,产生的横切井筒水力裂缝扩展距离越远;小排量下净压力低,压裂液易滤失,不易产生深穿透的主裂缝;压裂级数少的缝间干扰弱,能够开启相应级数的水力裂缝;地应力状态影响着层理缝及岩样的压实,上覆应力低时,压裂液易渗入层理缝,诱导应力值较小,且较为波动.结合泵注压力曲线和诱导应力曲线能更准确地了解水力压裂裂缝扩展的过程,推进对水平井多级分段压裂裂缝扩展规律的深入研究.
Abstract:
In order to clarify the influence of in-situ stress difference, displacement and fracturing series on the propagation of staged fractures in shale horizontal wells, we do the research based on a true triaxial hydraulic fracturing test system, using outcrop shale samples (300 mm × 300 mm × 300 mm) as the research object, combined with the new method of fracture-induced stress detection of staged fracturing and the three-dimensional morphological structure of specimens after hydraulic fracturing test. On the condition of maximum horizontal stress > vertical stress > minimum horizontal stress, we carry out the page multi-stage fracturing test study of horizontal wells in rock outcrops, to explore the influence of in-situ stress difference, pumping displacement and fracturing series on the fracture propagation of staged multi-stage fracturing in shale horizontal wells. The research results show that: because the overburden stress is lower than the maximum horizontal principal stress, the horizontal stress difference (the value is equal to the maximum horizontal stress minus the minimum horizontal stress) remains unchanged, and the reduction of the overburden stress easily leads to the opening of the bedding joints; the greater the horizontal stress difference is, the farther the propagation distance of the cross-cutting wellbore hydraulic fracture is; the net pressure is low under small displacement, the fracturing fluid is easy to filter out, and it is not easy to produce deep-penetrating main fractures; the interference between fractures with fewer fracturing stages is weak and can open hydraulic fractures of the corresponding series; the state of in-situ stress affects the compaction of bedding fractures and rock samples. When the overlying stress is low, the fracturing fluid is easy to penetrate into the bedding fractures, and the induced stress value is small and fluctuates greatly. Combined with the pump injection pressure curve and the induced stress curve, we can more accurately undersand the process of hydraulic fracturing fracture propagation. The research results of this article can promote the in-depth study of the fracture propagation law of multi-stage staged fracturing in horizontal wells.

参考文献/References:

[1] 赵振峰,唐梅荣,杜现飞,等.压裂水平井非稳态产能分析与影响因素研究——以鄂尔多斯长庆致密油为例[J].深圳大学学报理工版,2017,34(6):647-654.
ZHAO Zhenfeng, TANG Meirong, DU Xianfei, et al. Analysis of unsteady productivity and influencing factors of fractured horizontal wells: taking ordos changqing tight oil as an example [J]. Journal of Shenzhen University Science and Engineering, 2017, 34(6): 647-654.(in Chinese)
[2] GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume [J]. Fuel, 2014, 128: 373-380.
[3] TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation [J]. Fuel, 2017, 206: 482-493.
[4] 考佳玮,金 衍,付卫能,等.深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J].岩石力学与工程学报,2018,37(6):1332-1339.
KAO Jiawei, JIN Yan, FU Weineng, et al.Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J].Chinese Journal of Rock Mechanics and Engineering,2018, 37(6): 1332-1339.(in Chinese)
[5] 侯 冰,陈 勉,李志猛,等.页岩储集层水力裂缝网络扩展规模评价方法[J].石油勘探与开发,2014,41(6):763-768.
HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs [J].Petroleum Exploration and Development, 2014, 41(6): 763-768.(in Chinese)
[6] 陈 勉,庞 飞,金 衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增刊1):868-872.
CHEN Mian, PANG Fei, JIN Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(Suppl.1): 868-872.(in Chinese)
[7] 李 军,丁士东,韩礼红,等.页岩气多级压裂井筒完整性失效机理及控制方法研究进展[J].石油管材与仪器,2020,6(4):10-15.
LI Jun, DING Shidong, HAN Lihong, et al. Research progress on failure mechanism and control methods of shale gas multi-stage fractured wellbore integrity [J]. Petroleum Tubing and Instruments, 2020, 6(4): 10-15.
[8] YIN Jun, ZHANG Peifei, LIU Zhihui, et al. Experimental study on physical simulation of shale gas hydraulic fracturing [J]. IOP Conference Series: Earth and Environmental Science, 2018, 186(4): 012056.
[9] LI Sihai, ZHANG Shicheng, MA Xinfang, et al. Hydraulic fractures induced by water-/carbon dioxide-based fluids in tight sandstones [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 3323-3340.
[10] 郭天魁,曲占庆,李明忠,等.大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发[J].实验室研究与探索,2018,37(10):242-246,261.
GUO Tiankui, QU Zhanqing, LI Mingzhong, et al.Development of the large-scale virtual simulation experimental device of proppant transportation and placement in complex fractures [J]. Research and Exploration in Laboratory, 2018, 37(10): 242-246, 261.(in Chinese)
[11] 李 准,吴晓东,韩国庆,等.考虑裂缝导流能力时效性的多级压裂水平井产能半解析模型[J].石油钻采工艺,2019,41(3):354-362.
LI Zhun, WU Xiaodong, HAN Guoqing, et al. Semi-analytical model of multi-stage fractured horizontal well productivity considering the timeliness of fracture conductivity [J]. Petroleum Drilling & Production Technology, 2019, 41(3): 354-362 .
[12] 江 昀,许国庆,石 阳,等.致密岩心带压渗吸的影响因素实验研究[J].深圳大学学报理工版,2020,37(5):497-506.
JIANG Yun, Xu Guoqing, SHI Yang, et al. Experimental study on the influencing factors of pressure seepage in tight cores [J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 497-506.
[13] LEI Bo, ZUO Jianping, LIU Haiyan, et al. Experimental and numerical investigation on shale fracture behavior with different bedding properties [J]. Engineering Fracture Mechanics, 2021, 247(5): 107639.
[14] SONG Huifang, LIANG Zhirong, CHEN Zhixi, et al. Numerical modelling of hydraulic fracture propagation in poro-viscoelastic formation [J]. Journal of Petroleum Science and Engineering, 2021, 196(6): 107640.
[15] 董丙响,杨 柳,李 伟,等.水平井压裂裂缝起裂及延伸规律模拟实验研究[J].特种油气藏,2019,26(6):151-157.
DONG Bingxiang, YANG Liu, LI Wei, et al. Physical simulation of fracture initiation and propagation in horizontal well fracturing [J]. Special Oil & Gas Reservoirs, 2019, 26(6): 151-157.(in Chinese)
[16] 俞然刚,张 尹,郑彬涛,等.射孔相位及地应力对薄互层起裂压力及裂缝扩展影响的实验研究[J].钻井液与完井液,2020,37(1):110-115.
YU Rangang, ZHANG Yin, ZHENG Bintao, et al. Experimental study on the effects of perforation phasing on fracturing pressure and fracture propagation of thin interbeds [J]. Drilling Fluid and Completion Fluid, 2020, 37(1): 110-115.(in Chinese)
[17] ZHAO Junliang, ZHANG Dongxiao. Dynamic microscale crack propagation in shale [J]. Engineering Fracture Mechanics, 2020, 228: 106906.
[18] 林伯韬,史 璨,庄 丽,等.基于真三轴实验研究超稠油储集层压裂裂缝扩展规律[J].石油勘探与开发,2020,47(3):608-616.
LIN Baitao, SHI Can, ZHUANG Li, et al. Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments [J]. Petroleum Exploration and Development, 2020, 47(3): 608-616.(in Chinese)

相似文献/References:

[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
 Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(2):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
 Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(2):649.[doi:10.3724/SP.J.1249.2013.06649]
[3]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
 Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(2):266.[doi:10.3724/SP.J.1249.2015.03266]
[4]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(2):98.[doi:10.3724/SP.J.1249.2017.01098]
[5]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
 Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(2):91.[doi:10.3724/SP.J.1249.2017.01091]
[6]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
 ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(2):362.[doi:10.3724/SP.J.1249.2018.04362]
[7]张继成,范佳乐,匡力,等.一种预测特高含水期开发指标的联解法[J].深圳大学学报理工版,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
 ZHANG Jicheng,FAN Jiale,KUANG Li,et al.An integrated method for predicting the development index of extra-high water cut period[J].Journal of Shenzhen University Science and Engineering,2018,35(2):558.[doi:10.3724/SP.J.1249.2018.06574]
[8]苏泽中,林加恩,柏明星,等.天然能量开发阶段的缝洞型油藏井间连通性分析[J].深圳大学学报理工版,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
 SU Zezhong,LIN Jiaen,BAI Mingxing,et al.Inter-well connectivity analysis in carbonate fracture-vuggy reservoir in natural energy development stage[J].Journal of Shenzhen University Science and Engineering,2020,37(2):645.[doi:10.3724/SP.J.1249.2020.06645]
[9]刘旭鹏,袁彬,戴彩丽,等.低渗油藏活性纳米颗粒减阻增注解析模拟方法[J].深圳大学学报理工版,2021,38(6):563.[doi:10.3724/SP.J.1249.2021.06563]
 LIU Xupeng,YUAN Bin,,et al.A novel analytical simulation method of utilization of surfactant-active nanoparticles for well injection enhancement in low-permeability reservoirs[J].Journal of Shenzhen University Science and Engineering,2021,38(2):563.[doi:10.3724/SP.J.1249.2021.06563]
[10]毛新军,胡广文,张晓文,等.双重介质致密油藏油水两相瞬态流动模拟方法[J].深圳大学学报理工版,2021,38(6):572.[doi:10.3724/SP.J.1249.2021.06572]
 MAO Xinjun,HU Guangwen,ZHANG Xiaowen,et al.Simulation method of oil-water two-phase transient flow in dual-porosity system in tight reservoir[J].Journal of Shenzhen University Science and Engineering,2021,38(2):572.[doi:10.3724/SP.J.1249.2021.06572]

备注/Memo

备注/Memo:
Received: 2021-05-31; Accepted: 2021-08-05; Online (CNKI): 网上出版日期:2021-09-29
Foundation: Natural Science Foundation of Shandong Province Excellent Youth Project (ZR2020YQ36); Natural Science Foundation of Shandong Province (ZR2019QEE005)
Corresponding author: Professor GUO Tiankui. E-mail: guotiankui@126.com
Citation: GUO Tiankui, SUN Yueming, LIU Xuewei, et al.Physical simulation test of multi-stage staged fracturing for shale horizontal wells [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(2): 111-118.(in Chinese)
基金项目:山东省自然科学基金省优青资助项目(ZR2020YQ36);山东省自然科学基金资助项目(ZR2019QEE005)
作者简介:郭天魁(1984—),中国石油大学(华东)教授. 研究方向:储层改造理论与技术.E-mail: guotiankui@126.com
引 文:引用格式:郭天魁,孙悦铭,刘学伟,等.页岩水平井多级分段压裂物理模拟试验[J].深圳大学学报理工版,2022,39(2):111-118.
更新日期/Last Update: 2022-03-30