[1]方鹏飞,张日红,娄扬,等.静钻根植能源桩技术及其应用[J].深圳大学学报理工版,2022,39(1):101-109.[doi:10.3724/SP.J.1249.2022.01101]
 FANG Pengfei,ZHANG Rihong,LOU Yang,et al.Technology and application of static drilling rooted geothermal energy pile[J].Journal of Shenzhen University Science and Engineering,2022,39(1):101-109.[doi:10.3724/SP.J.1249.2022.01101]
点击复制

静钻根植能源桩技术及其应用()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
101-109
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Technology and application of static drilling rooted geothermal energy pile
文章编号:
202201014
作者:
方鹏飞12张日红3娄扬4刘春阳4潘卫杰4张秋善12王忠瑾1 2谢新宇4
1)浙大宁波理工学院,浙江宁波,315100
2)浙江大学宁波研究院,浙江宁波 315100
3)中淳高科桩业股份有限公司,浙江宁波 315145
4)浙江大学滨海和城市岩土工程研究中心,浙江杭州 310058
Author(s):
FANG Pengfei12 ZHANG Rihong3 LOU Yang4 LIU Chunyang4 PAN Weijie4 ZHANG Qiushan12 WANG Zhongjin12and XIE Xinyu4
1) NingboTech University, Ningbo 315100, Zhejiang Province, P.R.China
2) Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang Province, P.R.China
3) ZCONE High-tech Pile Industry Co. Ltd., Ningbo 315145, Zhejiang Province, P.R.China
4) Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, Zhejiang Province, P.R.China
关键词:
桩基工程能源桩静钻根植能源桩施工工艺热力试验性能系数轴向热应力附加摩阻力零点
Keywords:
pile foundation engineering energy pile static drilling rooted geothermal energy pile construction technologythermo-mechanical test coefficient of performance axial thermal stress mobilized shaft resistance null point
分类号:
TU473.1
DOI:
10.3724/SP.J.1249.2022.01101
文献标志码:
A
摘要:
能源桩作为一种浅层地温能利用的建筑节能技术,是建筑运行阶段减少碳排放的主要途径之一. 结合静钻根植桩的特点,提出静钻根植能源桩技术及施工工艺. 结合实际工程,开展静钻根植能源桩的短期工况和长期工况热力试验,分析桩身温度变化、性能系数、桩身轴向附加应力和桩侧附加摩阻力等变化规律. 试验结果表明,桩身温度随时间逐渐升高,而性能系数随时间的推移逐渐降低,并最终稳定于一恒值. 桩身轴向附加应力和桩侧附加摩阻力的发挥性状受桩顶、桩端约束条件的制约. 短期工况试验中,桩身轴向附加应力呈中间大两头小的分布形式,桩侧附加摩阻力分布存在一个零点;长期工况下,桩身轴向附加应力呈现两端大中间小的分布形式,桩侧附加摩阻力分布规律与时间、温度和约束条件等因素有关,桩身从一个零点逐渐演变为3个. 研究结果可为能源桩技术的进一步推广应用提供理论参考.
Abstract:
As a kind of building energy saving technology utilizing the shallow geothermal energy, energy pile is one of the ways to achieve the goal of reducing carbon emissions during building operation. Considering the shortcomings of construction technology for traditional energy pile, we propose the static drilling rooted geothermal energy pile (SDRGEP) and construction technology based on its characteristic. The short-term and long-term tests of SDREP are carried out by a test pile of a building in Ningbo. The variation properties of pile temperature, coefficient of performance (COP), thermally induced axial load and mobilized shaft resistance are analyzed. The test results show that the pile temperature gradually increases with time. COP value gradually decreases over time and then tends to be constant. Particularly, the performance of thermal axial stress and mobilized shaft resistance are determined by the constraint conditions of pile top and pile end. In the short-term test, the thermal axial stress shows the form of large in the middle and small in both ends, and there is a null point (NP). In the long-term test, the thermal axial stress at the top of the pile are larger. The mobilized shaft resistance is related to the time, temperature and constraint conditions, etc. It is varied gradually from one NP to three NPs along the pile. Therefore, the test results are related to the service state and construction technology of pile, which provides the theoretical basis for promoting the application of the SDRGEP.

参考文献/References:

[1] 黄 磊,李巧萍,徐 影,等. 气候变暖时不我待——解读《中国应对气候变化国家方案》[J]. 中国减灾,2007(7):12-13.
HUANG Lei, LI Qiaoping, XU Ying, et al. Don’t wait when the climate warms: interpretation of China’s National Plan for Climate Change [J]. Chinese Disaster Reduction, 2007(7): 12-13.(in Chinese)
[2] ISON R. Systems practice:how to act in a climate change world [M]. [S.l.]: Springer Science & Business Media, 2010.
[3] PIELKE J. The British climate change act: a critical evaluation and proposed alternative approach [J]. Environmental Research Letters, 2009, 4(2): 024010.
[4] FUNK W C, FORESTER B R, CONVERSE S J, et al. Improving conservation policy with genomics: a guide to integrating adaptive potential into US endangered species act decisions for conservation practitioners and geneticists [J]. Conservation Genetics, 2019, 20(1): 115-134.
[5] BOWEN A, RYDGE J. Climate change policy in the United Kingdom [M]. Paris: OECD Publishing, 2011.
[6] 巢清尘,张永香,高 翔,等. 巴黎协定:全球气候治理的新起点[J]. 气候变化研究进展,2016,12(1):61-67.
CHAO Qingchen, ZHANG Yongxiang, GAO Xiang, et al. Paris agreement: a new start for global governance on climate [J]. Climate Change Progress, 2016, 12(1): 61-67.(in Chinese)
[7] ROGELJ J, DEN ELZEN M,H?HNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃ [J]. Nature, 2016, 534(7609): 631-639.
[8] 李俊峰. 关于统筹实现碳达峰目标与碳中和愿景的几点建议[J]. 环境与可持续发展,2021,46(2):11-13.
LI Junfeng. Recommendations on achieving carbon peak goal and carbon neutrality vision as a whole [J]. Environment and Sustainable Development, 2021, 46(2): 11-13.(in Chinese)
[9] 唐登杰. 大力推动节能工作 助力实现碳达峰碳中和[N]. 人民日报,2021-08-25.
TANG Dengjie. Vigorously promote energy conservation to help achieve carbon peak carbon neutralization [N]. People’s Daily, 2021-08-25.(in Chinese)
[10] 中国建筑节能协会. 中国建筑能耗研究报告[R]. 2020.
China Building Energy Efficiency Association. Research report on building energy consumption in China [R]. 2020.(in Chinese)
[11] 中国国家统计局. 中国能源大数据报告(2020):能源综合篇[R]. 2020-05-21.
China National Bureau of Statistics. China energy big data report (2020): energy synthesis [R]. 2020-05-21.(in Chinese)
[12] 杜克磊,赵俊兰,刘 谏,等. 我国地源热泵应用研究现状与展望[J]. 北方工业大学学报,2018,30(2):96-104.
DU Kelei, ZHAO Junlan, LIU Jian, et al. Review of application of ground source heat pump in China [J]. Journal of North China University of Technology, 2018, 30(2): 96-104.(in Chinese)
[13] LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review [J]. Geothermics, 2020: 101915.
[14] 徐 伟.中国地源热泵发展研究报告(2018)[M]. 北京:中国建筑工业出版社, 2018.
XU Wei. China ground source heat pump development research report (2018) [M]. Beijing:China Architecture Publishing & Media Co. Ltd, 2018.(in Chinese)
[15] ARESTI L, CHRISTODOULIDES P, PANAYIOTOU G P, et al. The potential of utilizing buildings foundations as thermal energy storage (TES) units from solar plate collectors [J]. Energies, 2020, 13(11): 2695.
[16] 孔纲强,吕志祥,孙智文,等. 黏性土地基中摩擦型能量桩现场热响应试验[J]. 中国公路学报,2021,34(3):95-102.
KONG Gangqiang, Lü Zhixiang, SUN Zhiwen, et al. Thermal response testing on friction energy piles embedded in clay [J]. China Journal of Highway and Transport, 2021, 34(3): 95-102.(in Chinese)
[17] LORIA A, LALOUI L. Displacement interaction among energy piles bearing on stiff soil strata [J]. Computers and Geotechnics, 2017, 90: 144-154.
[18] SUTMAN M, BRETTMANN T, OLGUN C G. Full-scale in-situ tests on energy piles: head and base-restraining effects on the structural behaviour of three energy piles [J]. Geomechanics for Energy and the Environment, 2019, 18: 56-68.
[19] 郭易木,钟 鑫,刘松玉,等. 自由约束条件下分层地基中 PHC 能源桩热力响应原型试验研究[J]. 岩石力学与工程学报,2019,38(3):582-590.
GUO Yimu, ZHONG Xin, LIU Songyu, et al. Prototype experimental investigation on the thermo-mechanical behaviors of free constrained full-scale PHC energy piles in multi-layer strata [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 582-590.(in Chinese)
[20] 蒋 刚,李仁飞,王 昊,等. 摩擦型能源桩热-力耦合全过程承载性能分析[J]. 岩石力学与工程学报,2019,38(12):2525-2534.
JIANG Gang, LI Renfei, WANG Hao, et al. Numerical analysis of bearing capacity of floating energy pile during full process thermal-mechanical coupling [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525-2534.(in Chinese)
[21] 娄 扬,方鹏飞,张日红,等. 外置双U型静钻根植工法能源桩换热性能研究[J]. 防灾减灾工程学报, 2021,41(1):100-109.
LOU Yang, FANG Pengfei, ZHANG Rihong,etc. Heat transfer performance analysis of static drill rooted geothermal energy piles with external double U tubes [J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 100-109.(in Chinese)
[22] 黄 晟,周佳锦,龚晓南,等. 静钻根植桩抗压抗拔承载性能试验研究[J]. 湖南大学学报自然科学版,2021,48(1):30-36.
HUANG Sheng, ZHOU Jiajin, GONG Xiaonan, et al. Experimental study on bearing capacity of pre-bored grouted planted pile under compression and tension [J]. Journal of Hunan University Natural Sciences, 2021, 48(1): 30-36.(in Chinese)
[23] 方鹏飞,娄 扬,赵 云,等. 静钻根植工法地热能源桩及其传热管埋设方法:中国,CN108709328B[P]. 2019-12-13.
FANG Pengfei, LOU Yang, ZHAO Yun, et al. A geothermal energy pile with static drill rooted technology and embedding method of heat exchange tube: China, CN108709328B [P]. 2019-12-13.(in Chinese)
[24] NICHOLSON S R, KOBER L R, ATEFRAD P, et al. The influence of geometry on the performance of a helical steel pile as a geo-exchange system [J]. Renewable Energy, 2021, 172: 714-727.
[25] REN L W, XU J, KONG G Q, et al. Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles [J]. Renewable Energy, 2020, 147: 1098-1106.
[26] 方鹏飞,高 翔,娄 扬,等. 夏季工况下正常服役地热能源桩承载性能原位试验研究[J]. 岩石力学与工程学报,2021,40(5):1032-1042.
FANG Pengfei, GAO Xiang, LOU Yang. Field test on the bearing behaviors of geothermal energy piles in natural service under the summer condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 1032-1042.(in Chinese)

相似文献/References:

[1]陈智,海迪,张国刚,等.不同种类地埋管换热器换热试验与仿真[J].深圳大学学报理工版,2022,39(1):20.[doi:10.3724/SP.J.1249.2022.01020]
 CHEN Zhi,HAI Di,ZHANG Guogang,et al.Experiment and simulation research on heat exchange of different types of underground heat exchangers[J].Journal of Shenzhen University Science and Engineering,2022,39(1):20.[doi:10.3724/SP.J.1249.2022.01020]
[2]常虹,朱万里,王琰,等.饱和黏土地基中能源桩热-力学特性试验研究[J].深圳大学学报理工版,2022,39(1):85.[doi:10.3724/SP.J.1249.2022.01085]
 CHANG Hong,ZHU Wanli,WANG Yan,et al.Experimental study on thermal-mechanical properties of energy pile in saturated clay foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):85.[doi:10.3724/SP.J.1249.2022.01085]
[3]曹光形,邓岳保,俞磊,等.考虑软土超固结的静钻根植能源桩模型试验[J].深圳大学学报理工版,2022,39(1):93.[doi:10.3724/SP.J.1249.2022.01093]
 CAO Guangxing,DENG Yuebao,YU Lei,et al.Model test of static drilling and rooted energy pile considering over-consolidated behavior of soft soil[J].Journal of Shenzhen University Science and Engineering,2022,39(1):93.[doi:10.3724/SP.J.1249.2022.01093]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:Natural Science Foundation of Zhejiang Province(LY20E080001);Natural Science Foundation of Ningbo City(2021J169)
Corresponding author:Professor ZHANG Rihong.E-mail:zhangrh@zcone.com.cn
Citation:FANG Pengfei, ZHANG Rihong, LOU Yang, et al.Technology and application of static drilling rooted geothermal energy pile [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 101-109.(in Chinese)
基金项目:浙江省自然科学基金资助项目(LY20E080001);宁波市自然科学基金资助项目(2021J169)
作者简介:方鹏飞(1975—),浙大宁波理工学院副教授、博士.研究方向:桩基工程、能源地下工程.E-mail:fpf@nit.zju.edu.cn
引 文:引用格式:方鹏飞,张日红,娄 扬,等.静钻根植能源桩技术及其应用[J].深圳大学学报理工版,2022,39(1):101-109.
更新日期/Last Update: 2022-01-30