[1]常虹,朱万里,王琰,等.饱和黏土地基中能源桩热-力学特性试验研究[J].深圳大学学报理工版,2022,39(1):85-92.[doi:10.3724/SP.J.1249.2022.01085]
 CHANG Hong,ZHU Wanli,WANG Yan,et al.Experimental study on thermal-mechanical properties of energy pile in saturated clay foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):85-92.[doi:10.3724/SP.J.1249.2022.01085]
点击复制

饱和黏土地基中能源桩热-力学特性试验研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
85-92
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Experimental study on thermal-mechanical properties of energy pile in saturated clay foundation
文章编号:
202201012
作者:
常虹1 朱万里1 王琰1 赵嵩颖2
1)吉林建筑大学测绘与勘查工程学院,吉林长春 130118
2)吉林建筑大学市政与环境工程学院,吉林长春 130118
Author(s):
CHANG Hong1 ZHU Wanli1 WANG Yan1 and ZHAO Songying2
1) School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, Jilin Province, P.R.China
2) School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, Jilin Province, P.R.China
关键词:
岩土工程饱和黏土能源桩模型试验桩顶位移侧摩阻力
Keywords:
geotechnical engineering saturated clay energy pile model test displacement of pile top shaft friction
分类号:
TU473
DOI:
10.3724/SP.J.1249.2022.01085
文献标志码:
A
摘要:
建立室内模型试验,针对多次温度循环下饱和黏土地基中能源桩热-力响应展开研究,分析了桩周温度场、桩土沉降、桩身附加热应力及侧摩阻力的变化. 结果表明,升温时桩身温度沿深度逐渐减小,土体温度沿径向逐渐降低;降温所引起的桩顶沉降量大于升温的膨胀量,将换热液体从5 ℃加热至70 ℃并维持24 h,随后降温至5 ℃并维持5 h,如此循环3次,导致桩顶产生不可逆的累积沉降;距桩身越近桩周土产生的沉降越大,沉降速率随循环次数的增加呈减小趋势,3次循环后,距桩侧130 mm处土体表面沉降达到桩直径的1.42%;温度荷载所引起的桩身附加应力和侧摩阻力均随温度的升高和循环次数的增加而逐渐增大,工作荷载作用下桩身附加热应力最大值达到695.40 kPa,最大热应力所在位置随桩顶荷载的增加而逐渐上移;升温时桩体上部产生负的侧摩阻力,下部产生正的侧摩阻力,降温时恰好相反;工作荷载的作用导致桩身产生负摩阻力的区域逐渐变小,位移零点也逐渐上移.
Abstract:
Based on the laboratory model test, the thermal-mechanical response of the energy pile in saturated clay foundation under multiple temperature cycles was studied. The temperature field around the pile, the settlement of pile and soil, the additional heating stress of pile and the shaft friction were analyzed. The results show that the temperature of pile and soil decreases along the depth and radial direction respectively, when the temperature rises. The settlement of pile top caused by cooling is greater than the expansion caused by heating. The heat transfer liquid was heated from 5 ℃ to 70 ℃, then maintained for 24 h, and then cooled to 5 ℃ for 5 h. This cycle for 3 times results in irreversible cumulative settlement of pile top. The settlement decreases with the distance from the pile, and the sedimentation rate of the soil decreases with the increase of the number of cycles. After three cycles, the settlement of soil surface 130 mm away from pile side reaches 1.42% of diameter of pile. The additional stress and the shaft friction of pile caused by temperature load increase gradually with the increase of temperature and number of cycles. The maximum additional heating stress reaches 695.40 kPa under working load, and the value varies with the change of pile top constraint condition, and its position moves gradually upward with the increase of the load on pile top. When heating, the negative shaft friction occurs in the upper part of the pile and the positive shaft friction occurs in the lower part. When cooling, the results are just the opposite. Under the action of the working load, the negative shaft friction area of the pile becomes smaller, and the zero-displacement point moves upward gradually.

参考文献/References:

[1] BRANDL H. Energy foundations and other thermo-active ground structures [J].Géotechnique, 2006, 56(2): 81-122.
[2] MONIQUE D M. Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2683-2696.
[3] STEWART M A, MCCARTNEY J S. Centrifuge modeling of soil-structure interaction in energy foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4): 04013044.
[4] 桂树强,程晓辉. 能源桩换热过程中结构响应原位试验研究[J].岩土工程学报,2014,36(6):1087-1094.
GUI Shuqiang, CHENG Xiaohui. In-situ tests on structural responses of energy piles during heat exchanging process [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094.(in Chinese)
[5] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay [J]. Géotechnique Letters, 2014, 4(4): 310-316.
[6] 王成龙,刘汉龙,孔纲强,等. 工作荷载下温度循环对桩基变形与应力的影响分析[J]. 岩土力学,2016,37(增刊1):317-322.
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Influence of circular temperature on the strain and stress of energy piles under a working load [J]. Rock and Soil Mechanics, 37(Suppl.1): 317-322.(in Chinese)
[7] YAVARI N. Mechanical behaviour of a small-scale energy pile in saturated clay [J].Géotechnique, 2016, 66(11): 878-887.
[8] 刘干斌,谢琦峰,范高飞,等. 饱和黏土中热交换桩承载力特性模型试验研究[J]. 岩石力学与工程学报,2017,36(10):2535-2543.
LIU Ganbin, XIE Qifeng, FAN Gaofei, et al. Model test on bearing capacity characteristics of heat exchanger piles in saturated clays [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2535-2543.(in Chinese)
[9] 路宏伟,蒋 刚,王 昊,等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报,2017,39(2):334-342.
LU Hongwei, JIANG Gang, WANG Hao, et al. In situ tests and analysis of mechanical-thermo bearing characteristic of drilled friction geothermal energy pile [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342.(in Chinese)
[10] WU Di. Displacement response of an energy pile in saturated clay [J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2018, 171(4): 285-294.
[11] 费 康,钱 健,洪 伟,等. 黏土地基中能源桩力学特性数值分析[J]. 岩土力学,2018,39(7):2651-2661.
FEI Kang, QIAN Jian, HONG Wei, et al. Numerical analysis of mechanical behavior of energy piles in clay [J]. Rock and Soil Mechanics, 2018, 39(7): 2651-2661.(in Chinese)
[12] 陆浩杰,吴 迪,孔纲强,等. 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020,37(5):156-165.
LU Haojie, WU Di, KONG Gangqiang,et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156-165.(in Chinese)
[13] 任连伟,任军洋,孔纲强,等. 冷热循环下PHC能量桩热力响应和承载性能现场试验[J]. 岩土力学, 2021,42(2):529-536,546.
REN Lianwei, REN Junyang, KONG Gangqiang, et al. Field tests on thermos-mechanical response and bearing capacity of PHC energy pile under cooling-heating cyclic temperature [J]. Rock and Soil Mechanics, 2021, 42(2): 529-536, 546.(in Chinese)
[14] JGJ 106 — 2014 建筑基桩检测技术规范[S].
JGJ 106 — 2014 Technical code for testing of building foundation piles [S].(in Chinese)
[15] KALANTIDOU A. Preliminary study on the mechanical behaviour of heat exchanger pile in physical model [J]. Géotechnique, 2012, 62(11): 1047-1051.
[16] PETER J, BOURNE W, BINOD A, et al. A framework for understanding energy pile behavior [J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166(2): 170-177.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
 WANG Xiaoqiang,ZHANG Zhichao,and WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface[J].Journal of Shenzhen University Science and Engineering,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]

备注/Memo

备注/Memo:
Received:2021 - 10 - 12;Accepted:2021 - 11 - 30
Foundation:National Natural Science Foundation of China(42002263);Science and Technology Development Program of Jilin Province(20190303022SF)
Corresponding author:Associate professor ZHAO Songying.E-mail:zhaosongying1980@sina.com
Citation:CHANG Hong,ZHU Wanli,WANG Yan, et al.Experimental study on thermal-mechanical properties of energy pile in saturated clay foundation [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 85-92.(in Chinese)
基金项目:国家自然科学基金资助项目(42002263);吉林省科技发展计划资助项目(20190303022SF)
作者简介:常 虹(1973—),吉林建筑大学副教授、博士.研究方向:岩土工程和能源桩技术.E-mail:changhong0431@163.com
引 文:引用格式:常 虹,朱万里,王 琰,等.饱和黏土地基中能源桩热-力学特性试验研究[J].深圳大学学报理工版,2022,39(1):85-92.
更新日期/Last Update: 2022-01-30