参考文献/References:
[1] BOURNE-WEBB P J, AMATYA, B, SOGA K, et al. Energy pile test at Lambeth college, London:geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Geotechnique, 2009, 59(3): 237-248.
[2] 路宏伟,蒋 刚,王 昊,等.摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J].岩土工程学报,2017,39(2):334-342.
LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342.(in Chinese)
[3] 孔纲强,吕志祥,孙智文.等. 黏性土地基中摩擦型能量桩现场热响应试验[J].中国公路学报,2021,34(3):95-102.
KONG Gangqiang, Lü Zhixiang, SUN Zhiwen, et al. Thermal response testing of friction piles embedded in clay [J].China Journal of Highway and Transport, 2021, 34(3): 95-102.(in Chinese)
[4] GOOD J C, MCCARTNEY J S. Centrifuge modeling of end-restraint effects in energy pile foundation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015,141(8): 04015034.
[5] 孔纲强,王成龙,刘汉龙,等.多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学,2017,38(4):1-7.
KONG Gangqiang, WANG Chenglong, LIU Hanlong, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling [J]. Rock and Soil Mechanics, 2015, 38(4): 1-7.(in Chinese)
[6] 陆浩杰,吴 迪,孔纲强,等.循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学,2020,37(5):156-165.
LU Haojie, WU Di, KON Gangqiang, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156-165.(in Chinese)
[7] DIDONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861-888.
[8] OLGUN C G, OZUDOGRU T Y, SHERIF L A, et al. Long-term performance of heat exchanger piles [J]. Acta Geotechnica, 2015, 10(5): 553-569.
[9] SAGGU R, CHAKRABORTY T. Thermomechanical analysis and parametric study of geothermal energy piles in sand [J].International Journal of Geomechanics, 2017, 17(9): 04017076.
[10] RUI Y, YIN M. Investigations of pile-soil interaction under thermo-mechanical loading [J]. Canadian Geotechnical Journal, 2018, 55(7): 1016-1028.
[11] 杨 涛,刘律智,花永盛. 冷热循环下能量桩热-力学特性的数值模拟[J].防灾减灾工程学报,2019,39(4):585-591.
YANG Tao, LIU Lüzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behavior of energy pile subjected to cooling-heating cycle [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 585-591.(in Chinese)
[12] 王言然,孔纲强,沈 扬,等. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报自然科学版,2020,60(9):733-739
WANG Yanran, KONG Gangqiang, SHEN Yang, et al. Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions [J]. Journal of Tsinghua University Science and Technology, 2020, 60(9): 733-739.(in Chinese)
[13] MIMOUNI T, LALOUI L. Behaviour of a group of energy piles [J].Canadian Geotechnical Journal, 2015, 52(12): 1913-1929.
[14] ROTTA LORIA A F, LALOUI L. Thermally induced group effects among energy piles [J]. Geotechnique, 2017,67(5): 374-393.
[15] ROTTA LORIA A F, LALOUI L. Group action effects caused by various operating energy piles [J]. Geotechnique, 2018, 68(9): 834-841.
[16] PENG H F, KONG G Q, LIU HL, et al. Thermo-mechanical behaviour of floating energy pile groups in sand [J]. Journal of Zhejiang University Science A, 2018, 19(8): 638-649.
[17] NG C W, FARIVAR A, GOMAAS M M H, et al. Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading [J]. Renewable Energy, 2021, 172: 998-1012.
[18] JEONG S, LIM H, LEE J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups [J]. Applied Thermal Engineering, 2014, 71(1): 608-615.
相似文献/References:
[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
WANG Xiaoqiang,ZHANG Zhichao,and WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface[J].Journal of Shenzhen University Science and Engineering,2022,39(1):13.[doi:10.3724/SP.J.1249.2022.01013]
[12]陈玉,孔纲强,孟永东,等.间歇与持续加热下含承台能量桩基础现场试验[J].深圳大学学报理工版,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]
CHEN Yu,KONG Gangqiang,MENG Yongdong,et al.Field thermal response test of energy pile foundation with cap under intermittent and continuous heating[J].Journal of Shenzhen University Science and Engineering,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]