[1]唐皓,韦彬,张国柱,等.制冷工况下PHC能源桩的换热性能分析[J].深圳大学学报理工版,2022,39(1):51-58.[doi:10.3724/SP.J.1249.2022.01051]
 TANG Hao,WEI Bin,ZHANG Guozhu,et al.Analysis of the heat exchange performance of PHC energy pile under cooling condition[J].Journal of Shenzhen University Science and Engineering,2022,39(1):51-58.[doi:10.3724/SP.J.1249.2022.01051]
点击复制

制冷工况下PHC能源桩的换热性能分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
51-58
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Analysis of the heat exchange performance of PHC energy pile under cooling condition
文章编号:
202201008
作者:
唐皓1 韦彬1 张国柱2 操子明2
1)深圳市综合交通与市政工程设计研究总院有限公司,广东深圳 518003
2)东南大学岩土工程研究所,江苏南京 211189
Author(s):
TANG Hao1 WEI Bin1 ZHANG Guozhu2 and CAO Ziming2
1) Shenzhen Transportation & Municipal Engineering Design & Research Institute Co. Ltd., Shenzhen 518003, Guangdong Province, P.R.China
2) Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, P.R.China
关键词:
岩土工程桩基础PHC能源桩换热性能制冷工况田口法
Keywords:
geotechnical engineering pile foundation precast high-strength concrete energy pile heat exchange performance cooling condition Taguchi method
分类号:
TU473.1
DOI:
10.3724/SP.J.1249.2022.01051
文献标志码:
A
摘要:
为研究不同因素对预制高强混凝土(precast high-strength concrete, PHC)能源桩换热性能的影响,建立PHC能源桩三维数值仿真分析模型,分析不同注浆回填材料导热系数、热交换管入口温度、桩体导热系数和PHC桩回填直径对PHC能源桩换热性能的影响. 结果表明,PHC能源桩的换热量随注浆回填材料导热系数的增加而增大;制冷工况下,提高热交换管的入口温度有利于提升PHC能源桩的换热量;桩体导热系数的增加会提高PHC能源桩的换热性能;PHC能源桩的换热量随着PHC桩回填直径的增加而逐渐提高. 通过田口法分析了不同因素对PHC能源桩换热性能的影响,热交换管入口温度的影响最大,其次是注浆回填材料导热系数和PHC桩回填直径,桩体导热系数的影响最小. 研究结果可为PHC能源桩的工程设计和应用提供技术支撑和指导.
Abstract:
To investigate the influence sequence of different factors on the heat exchange performance of precast high-strength concrete (PHC) energy pile, a three-dimensional numerical simulation model of PHC energy pile was established and the effects of various thermal conductivities of grout backfill material, inlet temperatures of heat exchange pipe, thermal conductivities and backfill diameters of PHC pile on the heat exchange performance of PHC energy pile were analyzed. The results show that the heat exchange amount of PHC energy pile increases with the increase of the thermal conductivity of grout backfill material. In the cooling condition, increasing the inlet temperature of heat exchange pipe is beneficial to improving the heat exchange amount of PHC energy pile. Increase of thermal conductivity of PHC pile can enhance the heat exchange behavior of PHC energy pile. Moreover, the heat exchange amount of PHC energy pile gradually increases with increasing backfill diameter of PHC pile. On this basis, the Taguchi method was used to analyze the influence sequence of four different factors on the heat exchange performance of PHC energy pile. The impact of the inlet temperature of heat exchange pipe is the greatest, followed by the thermal conductivity of grout backfill material and backfill diameter of PHC pile, and the impact of thermal conductivity of PHC pile is the least. The results can provide a technical support and guidance for the design and application of the PHC energy piles in practical engineering.

参考文献/References:

[1] RYBACH L. Geothermal energy: sustainability and the environment [J]. Geothermics, 2003, 32(4/5/6): 463-470.
[2] SHORTALL R, DAVIDSDOTTIR B, AXELSSON G. Geothermal energy for sustainable development: a review of sustainability impacts and assessment frameworks [J]. Renewable and Sustainable Energy Review, 2015, 44: 391-406.
[3] 夏才初,曹诗定,王 伟. 能源地下工程的概念、应用与前景展望[J]. 地下空间与工程学报,2009,5(3):419-424.
XIA Caichu, CAO Shiding, WANG Wei. An introduction to energy geotechnical engineering [J]. Chinese Journal of Underground Space and Engineering, 2009, 5(3): 419-424.(in Chinese)
[4] BRANDL H. Energy foundations and other thermo-active ground structures [J]. Géotechnique, 2006, 56(2): 81-122.
[5] ADAM D, MARKIEWICZ R. Energy from earth-coupled structures, foundations, tunnels and sewers [J]. Géotechnique, 2009, 59(3): 229-236.
[6] 刘汉龙,孔纲强,吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报,2014,36(1):176-181.
LIU Hanlong, KONG Gangqiang, WU Hongwei. Applications of energy piles and technical development of PCC energy piles [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181.(in Chinese)
[7] ZHANG Guozhu, XIA Caichu, SUN Meng. A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers [J]. Cold Regions Science and Technology, 2013, 88: 59-66.
[8] REN Lianwei, XU Jian, KONG Gangqiang,et al. Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles [J]. Renewable Energy, 2020, 147: 1098-1106.
[9] SANI A K, SINGH R M. Response of unsaturated soils to heating of geothermal energy pile [J]. Renewable Energy, 2020, 147: 2618-2632.
[10] YOU Shuang, CHENG Xiaohui, GUO Hongxian, et al. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers [J]. Energy and Buildings, 2014, 79: 23-31.
[11] PARK H, LEE S, YOON S, et al. Evaluation of thermal response and performance of PHC energy pile:field experiments and numerical simulation [J]. Applied Energy, 2013, 103: 12-24.
[12] GO G H, LEE S R, YOON S, et al. Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects [J]. Applied Energy, 2014, 125: 165-178.
[13] GUO Yimu, ZHANG Guozhu, LIU Songyu. Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata [J]. Applied Thermal Engineering, 2018, 143: 836-848.
[14] ZHANG Guozhu, CAO Ziming, LIU Yiping, et al. Field test and numerical simulation on the long-term thermal response of PHC energy pile in layered foundation [J]. Sensors, 2021, 21(11): 3873.
[15] PERON H, KNELLWOLF C, LALOUI L. A method for the geotechnical design of heat exchanger piles [J]. Geotechnical Special Publication, 2011(211): 470-479.
[16] MA Qijie, WANG Peijun. Underground solar energy storage via energy piles [J]. Applied Energy, 2020, 261: 114361.
[17] 唐志伟,金 楠,闫桂兰. 地源热泵地中换热器的非稳态传热数值研究[J]. 可再生能源,2008,26(1):55-58.
TANG Zhiwei, JIN Nan, YAN Guilan. Numerical study on unsteady heat transfer of underground heat exchanger of GCHP [J]. Renewable Energy Resources, 2008, 26(1): 55-58.(in Chinese)
[18] COMSOL. Multiphysics user’s guide [M]. Stockholm, Sweden: COMSOL, 2020.
[19] ESEN H,TURGUT E.Optimization of operating parameters of a ground coupled heat pump system by Taguchi method [J]. Energy and Buildings, 2015, 107: 329-334.
[20] LIN Wenye, MA Zhenjun, COOPER P, et al. Thermal performance investigation and optimization of buildings with integrated phase change materials and solar photovoltaic thermal collectors [J]. Energy and Buildings, 2016, 116: 562-573.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51778138,51978162)
Corresponding author:Associate professor ZHANG Guozhu. E-mail:zhanggz@seu.edu.cn
Citation:TANG Hao,WEI Bin,ZHANG Guozhu, et al.Analysis of the heat exchange performance of PHC energy pile under cooling condition [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 51-58.(in Chinese)
基金项目:国家自然科学基金资助项目(51778138,51978162)
作者简介:唐皓(1975—),深圳市综合交通与市政工程设计研究总院有限公司高级工程师.研究方向:路桥设计、工程咨询及地下工程建设.E-mail:68087585@qq.com
引 文:引用格式:唐 皓,韦 彬,张国柱,等.制冷工况下PHC能源桩的换热性能分析[J].深圳大学学报理工版,2022,39(1):51-58.
更新日期/Last Update: 2022-01-30