[1]戚旭鹏,易富,金洪松,等.严寒区域中深层地热井套管换热影响因素分析[J].深圳大学学报理工版,2022,39(1):42-50.[doi:10.3724/SP.J.1249.2022.01042]
 QI Xupeng,YI Fu,JIN Hongsong,et al.Analysis of influence factors of casing heat transfer in middle-deep geothermal wells in severe cold region[J].Journal of Shenzhen University Science and Engineering,2022,39(1):42-50.[doi:10.3724/SP.J.1249.2022.01042]
点击复制

严寒区域中深层地热井套管换热影响因素分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
42-50
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Analysis of influence factors of casing heat transfer in middle-deep geothermal wells in severe cold region
文章编号:
202201007
作者:
戚旭鹏13 易富2 金洪松56 孟凡康1 于汇泽4 白文明6 包瀚博56
1)辽宁工程技术大学土木工程学院,辽宁阜新 123009
2)辽宁工程技术大学建筑与交通学院,辽宁阜新 123009
3)中国建筑科学研究院地基基础研究所,北京 100013
4)长春高新建设开发有限公司,吉林长春 130102
5)吉林省吉岩能源科学技术研究有限公司,吉林长春 130102
6)吉林省陆特堃喆能源科技有限公司,吉林长春 130102
Author(s):
QI Xupeng13 YI Fu2 JIN Hongsong56 MENG Fankang1 YU Huize4 BAI Wenming6 and BAO Hanbo56
1) School of Civil Engineering, Liaoning Technical University, Fuxin 123009, Liaoning Province, P.R.China
2) College of Architecture and Transportation, Liaoning Technical University, Fuxin 123009, Liaoning Province, P.R.China
3) Institute of Foundation Engineering, China Academy of Building Research, Beijing 100013, P.R.China
4) Changchun High New Technology Building Development Inc., Changchun 130102, Jilin Province, P.R.China
5) Jilin Geotechnical Energy Science and Technology Research Co. Ltd., Changchun 130102, Jilin Province, P.R.China
6) Jilin Loopmaster Kunzhe Energy Technology Co.Ltd., Changchun 130102, Jilin Province, P.R.China
关键词:
岩土工程中深层地热井数值传热模型严寒区域换热量换热器出口温度
Keywords:
geotechnical engineering middle-deep geothermal wells numerical heat transfer model severe cold region heat exchange heat exchanger outlet temperature
分类号:
TU43
DOI:
10.3724/SP.J.1249.2022.01042
文献标志码:
A
摘要:
中深层同轴套管换热技术通过套管内部流体循环达到提取地下深层地热能的目的. 由于换热器出口温度高,是严寒地区建筑物冬季采暖热源的良好选择. 通过对同轴套管与源侧岩土体传热过程的分析,基于标准κ-ε模型,采用Simple压力速度求解方法,建立流热固耦合二维非稳态数值传热模型. 研究结果表明,由于中国长春冬季寒冷,热泵运行期间,浅部地层温度低于换热器进口流体温度,地面向下3.9 m范围岩土体呈热源漏斗,随着地层深度增加,逐渐转变为热汇漏斗. 热泵运行第1周,换热器出口温度及换热量迅速降低,运行1个月后趋于平稳,整个供暖周期内,地埋管出口温度单位时间下降幅度越来越小,出口温度与时间之间的关系呈幂函数形式递减趋势. 随着固井水泥导热系数增加,换热量增加,当固井水泥导热系数大于岩土体后趋于稳定. 内管导热系数增大,热短路现象严重,换热器出口温度及换热量降低. 在热泵机组24 h开启和停止时间之比(启停比)分别为16 h∶8 h、12 h∶12 h和8 h∶16 h时,换热器出口温度和换热量呈不规则变化,但整体呈逐渐降低趋势. 热泵停止运行时间越长,源侧岩土体温度恢复越佳,再次开启时出口温度和换热量越大. 通过数值模型分析可以得到套管换热器各影响因素的变化规律.
Abstract:
The medium and deep coaxial casing heat exchange technology uses the fluid circulation inside the casing to improve the deep geothermal energy. Due to the high outlet temperature at the source side, it is a good choice for the heat source of buildings in severe cold areas in winter. We establish a two-dimensional unsteady numerical heat transfer model of fluid-thermal-structure coupling based on standard - model and Simple pressure velocity solution method by analyzing the heat transfer process between coaxial casing and rock mass at source side. According to the climate and stratum characteristics of Changchun City, we analyze the heat transfer performance of heat exchanger and rock and soil mass in full heating cycle by simulation. The results show that due to the cold winter in Changchun City, during the operation of the heat pump, the shallow formation temperature is lower than the fluid temperature at the inlet of the heat exchanger, and the rock and soil within 3.9 m below the ground is a heat source funnel, which gradually changes into a heat sink funnel with the increase of formation depth. In the first week of operation of the heat pump, the outlet temperature and heat exchange of the heat exchanger decrease rapidly and tend to be stable after one month of operation. In the whole operation cycle, the unit time decline of the outlet temperature of the buried pipe becomes smaller and smaller, and the relationship between the change of the outlet temperature and time decreases in the form of a power function with a slow speed. With the increase of thermal conductivity of cementing cement, the heat exchange first increases, and tends to be stable when the thermal conductivity of cementing cement is greater than that of rock and soil. The thermal conductivity of the inner tube increases, the thermal short circuit is serious, and the outlet water temperature and heat exchange of the heat exchanger decrease. When the heat pump unit 24 hours on and off time (start-stop ratio) is 16 h∶8 h, 12 h∶12 h, 8 h∶16 h, respectively, the heat exchanger outlet temperature and heat transfer are irregular, but the overall trend is gradually reduced. The longer the heat pump stops running, the better the temperature recovery of rock and soil body on the source side, and the greater the water outlet temperature and heat transfer when it is turned on again. Through the numerical model, the variation law of influence factors of casing heat exchanger can be obtained.

参考文献/References:

[1] ASCIONE F. Energy conservation and renewable technologies for buildings to face the impact of the climate change and minimize the use of cooling [J]. Solar Energy, 2017, 154: 34-100.
[2] SPITTLER N, SHAFIEI E, DAVIDSDOTTIR B, et al. Modelling geothermal resource utilization by incorporating resource dynamics, capacity expansion, and development costs [J]. Energy, 2020, 190: 116407.
[3] WANG Yuqing, LIU Yingxin, DOU Jinyue, et al. Geothermal energy in China: status, challenges,and policy recommendations [J]. Utilities Policy, 2020, 64: 101020.
[4] GAO Yuefen, GAO Tingting, LIU Zhao. Study on the heat transfer performance of boiling in vertical buried tube of direct expansion ground source heat pump [J]. Energy Procedia, 2019, 158: 5494-5503.
[5] ROY D, CHAKRABORTY T, BASU D, et al. Feasibility and performance of ground source heat pump systems for commercial applications in tropical and subtropical climates [J]. Renewable Energy, 2020, 152: 467-483.
[6] KONG Xiangri, DENG Yelin, LI Linyan, et al. Experimental and numerical study on the thermal performance of ground source heat pump with a set of designed buried pipes [J]. Applied Thermal Engineering, 2017, 114: 110-117.
[7] 刘 逸,陈培强,成庆林,等.严寒地区太阳能-地埋管地源热泵系统耦合性能研究[J].暖通空调,2021,51(6):121-127.
LIU Yi, CHEN Peiqiang, CHENG Qinglin, et al. Coupling performance of solar-ground source heat pump systems in severe cold zone [J]. HV & AC, 2021, 51(6): 121-127.(in Chinese)
[8] 邓杰文,魏庆芃,张 辉,等.中深层地热源热泵供暖系统能耗和能效实测分析[J].暖通空调,2017,47(8):150-154.
DENG Jiewen, WEI Qingpeng, ZHANG Hui, et al. On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating [J]. HV & AC, 2017, 47(8): 150-154.(in Chinese)
[9] 孙 婉.地下水渗流与地源热泵热量运移耦合模拟[J].太阳能学报,2021,42(5):16-23.
SUN Wan. Coupling simulation of groundwater seepage and heat transfer of ground source heat pump [J]. Acta energiae Solaris Sinica, 2021, 42(5): 16-23.(in Chinese)
[10] 孔彦龙,陈超凡,邵亥冰,等.深井换热技术原理及其换热量评估[J].地球物理学报,2017,60(12):4741-4752.
KONG Yanlong, CHEN Chaofan, SHAO Haibing, et al. Principle and capacity quantification of deep-borehole heat exchanger [J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752.(in Chinese)
[11] 方 亮.地源热泵系统中深层地埋管换热器的传热分析及其应用[D].济南:山东建筑大学,2018.
FANG Liang. Heat transfer analysis and application of deep borehole heat exchanger in ground source heat pump systems [D]. Jinan: Shandong Jianzhu University, 2018.(in Chinese)
[12] LI Ji, XU Wei, LI Jianfen, et al. Heat extraction model and characteristics of coaxial deep borehole heat exchanger [J]. Renewable Energy, 2021, 169: 738-751.
[13] 杨棋升,王 军,王宁刚,等. 同轴套管深埋管换热器不同埋深的综合换热能力[J]. 工业加热,2020,49(5):12-17.YANG Qisheng, WANG Jun, WANG Ninggang, et al. Study on Heat Transfer Intensity of Coaxial Sleeve Heat Exchanger with Different Buried Depth [J]. Industrial Heating, 2020, 49(5): 12-17. (in Chinese)
[14] 王 硕,殷元生,黄可钦,等. 同轴套管深埋管换热器延米换热量变化规律的研究[J]. 工业加热,2019,48(2):5-9.WANG Shuo, YIN Yuansheng, HUANG Keqin, et al. Research on the Change of Heat Transfer Rate per Meter in Deep Coaxial Borehole Heat Exchanger [J]. Industrial Heating, 2019, 48(2): 5-9. (in Chinese)
[15] 鲍玲玲,徐 豹,王子勇,等. 中深层同轴套管式地埋管换热器传热性能分析[J].地球物理学进展,2020,35(4):1217-1222.
BAO Lingling, XU Bao, WANG Ziyong, et al. Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger [J]. Progress in Geophysics, 2020, 35(4): 1217-1222.(in Chinese)
[16] 李永强,徐拴海,张卫东,等. 套管式地埋管换热器热短路及换热性能[J].煤田地质与勘探,2020,48(1):183-188.
LI Yongqiang, XU Shuanhai, ZHANG Weidong, et al. Thermal short-circuiting and heat transfer performance of coaxial bore-hole heat exchanger [J]. Coal Geology & Exploration, 2020, 48(1): 183-188.(in Chinese)
[17] 黄 帅,董建锴,姜建中,等. 中深层同轴套管式地埋管换热器取热特性[J]. 东北电力大学学报,2021,41(4):16-23.HUANG Shuai, DONG Jiankai, JIANG Jianzhong, et al. Heat extraction performance of medium and deep borehole heat exchanger [J]. Journal Of Northeast Electric Power University, 2021, 41(4): 16-23. (in Chinese)
[18] 马国华,于凤荣,张思青. 三种模型模拟混流式水轮机转轮叶片湍流场差异性比较[J].水电能源科学,2014,32(8):148-152.
MA Guohua, YU Fengrong, ZHANG Siqing. Comparison of numerical simulation of hydraulic turbine with three different models [J]. Water Resources and Power, 2014, 32(8): 148-152.(in Chinese)
[19] 李顺群,张 翻,王彦洋,等. 冻土导热系数骨架模型研究[J]. 深圳大学学报理工版,2020,37(2):165-172.LI Shunqun, ZHANG Fan, WANG Yanyang, et al. Study of thermal conductivity model of frozen soil skeleton [J]. Journal of Shenzhen University Science and Engineering, 2020,37(2): 165-172. (in Chinese)
[20] 陈之祥,李顺群,夏锦红,等. 基于紧密排列土柱模型的冻土热参数计算[J]. 深圳大学学报理工版,2017,34(4):393-399.CHEN Zhixiang, LI Shunqun, XIA Jinhong, et al. Calculation of thermal parameters of frozen soil based on the closely spaced soil column model [J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 393-399.(in Chinese)

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-12-20
Foundation:National Natural Science Foundation of China(51774163);Natural Science Foundation of Liaoning Province(2019-ZD-0044)
Corresponding author:Professor YI Fu.E-mail:yifu9716 @ 163.com
Citation:QI Xupeng,YI Fu,JIN Hongsong, et al.Analysis of influence factors of casing heat transfer in middle-deep geothermal wells in severe cold region [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 42-50.(in Chinese)
基金项目:国家自然科学基金资助项目(51774163);辽宁省自然科学基金资助项目(2019-ZD-0044)
作者简介:戚旭鹏(1988—),辽宁工程技术大学博士研究生.研究方向:环境土工与能源岩土.E-mail:qixupeng007@163.com
引 文:引用格式:戚旭鹏,易 富,金洪松,等.严寒区域中深层地热井套管换热影响因素分析[J].深圳大学学报理工版,2022,39(1):42-50.
更新日期/Last Update: 2022-01-30