[1]韦彬,谢勇利,张国柱,等.隧道衬砌换热器地源热泵长期性能数值分析[J].深圳大学学报理工版,2022,39(1):36-41.[doi:10.3724/SP.J.1249.2022.01036]
 WEI Bin,XIE Yongli,ZHANG Guozhu,et al.Numerical study on long-term performance of ground source heat pumps with tunnel lining heat exchangers[J].Journal of Shenzhen University Science and Engineering,2022,39(1):36-41.[doi:10.3724/SP.J.1249.2022.01036]
点击复制

隧道衬砌换热器地源热泵长期性能数值分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
36-41
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Numerical study on long-term performance of ground source heat pumps with tunnel lining heat exchangers
文章编号:
202201006
作者:
韦彬1谢勇利1张国柱2李承霖2
1)深圳市综合交通与市政工程设计研究总院有限公司,广东深圳 518003
2)东南大学岩土工程研究所,江苏南京 211189
Author(s):
WEI Bin1XIE Yongli1 ZHANG Guozhu2and LI Chenglin2
1) Shenzhen Transportation & Municipal Engineering Design & Research Institute Co. Ltd., Shenzhen 518003, Guangdong Province, P.R.China
2) Institute of Geotechnical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, P.R.China
关键词:
岩土工程地热能隧道衬砌换热器数值模型地源热泵能效
Keywords:
geotechnical engineering geothermal energy tunnel lining ground heat exchangers numerical model ground source heat pump energy efficiency
分类号:
TU473.1
DOI:
10.3724/SP.J.1249.2022.01036
文献标志码:
A
摘要:
为研究亚热带地区山岭隧道衬砌换热器地源热泵系统的长期性能,建立制冷模式下隧道衬砌换热器与热泵耦合的瞬态传热三维数值模型,并通过现场热响应试验进行验证. 以中国深圳市某隧道工程为依托,计算分析隧道衬砌换热器地源热泵系统持续运行10 a的换热性能. 计算结果表明:运行第10年的热交换管最高进、出口温度分别为36.96 ℃和33.46 ℃,满足热泵正常工作的温度范围,比第1年都仅提升了0.06 ℃;运行第10年的地源热泵最低能效比为4.76,满足地源热泵能效比的要求,且相较于第1年,最低能效比仅下降了0.01;系统运行10 a后,隧道围岩温度场的影响深度约为8 m.在山岭隧道洞内通风作用下,隧道衬砌换热器周围的围岩地温场可实现自恢复,山岭隧道衬砌换热器地源热泵系统用于亚热带地区建筑制冷是可行的.
Abstract:
To investigate the long-term performance of ground source heat pump connected to the mountain tunnel lining heat exchangers in subtropical region, a three-dimensional numerical model for the coupled heat transfer of heat pumps and tunnel lining GHEs was developed under the cooling condition. The validity of the heat transfer model was verified by the measured data of field thermal response tests. Based on a tunnel in Shenzhen, the heat transfer performance of ground source heat pump system connected to the tunnel lining heat exchanger under 10 years continuous operation was calculated and analyzed. The results show that the maximum inlet and outlet temperatures of the absorber pipe in the tenth year are 36.96 ℃ and 33.46 ℃, both of which meet the normal operating temperature range of the heat pump and only increase by 0.06 ℃ compared with the first year. The minimum energy efficiency ratio (EER) of the ground source heat pump in the tenth year is 4.76, which meets the EER requirement of the ground source heat pump, and the minimum EER only decreases by 0.01 compared to the first year. After 10 years’ operation of the system, the influencing depth for the temperature field of tunnel surrounding rock reaches approximately 8 m. Under the condition of tunnel ventilation in mountain regions, the temperature field of surrounding rock around the tunnel lining GHEs can realize a self-recovery, and the ground source heat pump connected to the mountain tunnel lining GHEs is feasible for the building cooling in subtropical region.

参考文献/References:

[1] BRANDL H. Energy foundations and other thermo-active ground structures [J]. Geotechnique, 2006, 56(2): 81-122.
[2] ADAM D, MARKIEWICZ R. Energy from earth-coupled structures, foundations, tunnels and sewers [J]. Geotechnique, 2009, 59(3): 229-236.
[3] ZHANG Guozhu, XIA Caichu, YANG Yong, et al. Experimental study on the thermal performance of tunnel lining ground heat exchangers [J]. Energy and Buildings, 2014, 77: 149-157.
[4] ZHANG Guozhu, Guo Yimu, ZHOU Yong, et al. Experimental study on the thermal performance of tunnel lining GHE under groundwater flow [J]. Applied Thermal Engineering, 2016, 106: 784-795.
[5] 张国柱,张玉强,夏才初,等.利用地温能的隧道加热系统及其施工方法[J]. 现代隧道技术,2015,52(6):170-176.
ZHANG Guozhu, ZHANG Yuqiang, XIA Caichu, et al. The construction of a geothermal energy based tunnel heating system [J]. Modern Tunnelling Technology, 2015, 52(6): 170-176.(in Chinese )
[6] 张国柱,夏才初,孙 猛,等.寒区隧道地源热泵型供热系统取热段温度场解析[J]. 岩石力学与工程学报,2012,31(增刊2):3795-3802.
ZHANG Guozhu, XIA Caichu, SUN Meng, et al. Temperature fields analysis of absorbing section of tunnel heating system using heating pump in cold region [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Suppl.2): 3795-3802.(in Chinese)
[7] ZHANG Guozhu, XIA Caichu, SUN Meng, et al. A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers [J]. Cold Regions Science and Technology, 2013, 88: 59-66.
[8] ZHANG Guozhu, XIA Caichu, ZHAO Xu, et al. Effect of ventilation on the thermal performance of tunnel lining GHEs [J]. Applied Thermal Engineering, 2016, 93: 416-424.
[9] BARLA M, DI DONNA A, PERINO A. Application of energy tunnels to an urban environment [J]. Geothermics, 2016, 61: 104-113.
[10] YOU Tian, WU Wei, SHI Wenxing, et al. An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions [J]. Applied Energy, 2016, 177: 515-536.
[11] YOU Tian, SHI Wenxing, WANG Baolong, et al. A new ground-coupled heat pump system integrated with a multi-mode air-source heat compensator to eliminate thermal imbalance in cold regions [J]. Energy and Buildings, 2015, 107: 103-112.
[12] QIAN Mingyang, YAN Da, An Jingjing, et al. Evaluation of thermal imbalance of ground source heat pump systems in residential buildings in China [J]. Building Simulation, 2020, 13(3): 585-598.
[13] ZHANG Linfeng, CHEN Jiayu, WANG Junqi, et al. Estimation of soil and grout thermal properties for ground-coupled heat pump systems: development and application [J]. Applied Thermal Engineering, 2018, 143: 112-122.
[14] ZHANG Linfeng, HUANG Gongsheng, ZHANG Quan, et al. An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system [J]. Renewable Energy, 2018, 126: 495-508.
[15] BIDARMAGHZ A, NARSILIO G A. Heat exchange mechanisms in energy tunnel systems [J]. Geomechanics for Energy and the Environment, 2018, 16: 83-95.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51778138)
Corresponding author:Associate professor ZHANG Guozhu. E-mail:zhanggz@seu.edu.cn
Citation:WEI Bin,XIE Yongli,ZHANG Guozhu, et al.Numerical study on long-term performance of ground source heat pumps with tunnel lining heat exchangers [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 36-41.(in Chinese)
基金项目:国家自然科学基金资助项目(51778138)
作者简介:韦彬(1979—),深圳市综合交通与市政工程设计研究总院有限公司高级工程师.研究方向:路桥设计、工程咨询及地下工程建设.E-mail:172360802@qq.com
引 文:引用格式:韦 彬,谢勇利,张国柱,等.隧道衬砌换热器地源热泵长期性能数值分析[J].深圳大学学报理工版,2022,39(1):36-41.
更新日期/Last Update: 2022-01-30