[1]王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13-19.[doi:10.3724/SP.J.1249.2022.01013]
 WANG Xiaoqiang,ZHANG Zhichao,and WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface[J].Journal of Shenzhen University Science and Engineering,2022,39(1):13-19.[doi:10.3724/SP.J.1249.2022.01013]
点击复制

桩-土界面的非等温不排水剪切行为分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
13-19
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Analysis of undrained non-isothermal shear behavior of pile-soil interface
文章编号:
202201003
作者:
王晓强12张志超12王烁堯12
1)重庆大学土木工程学院,重庆 400045
2)重庆大学山地城镇建设与新技术教育部重点实验室,重庆 400045
Author(s):
WANG Xiaoqiang12ZHANG Zhichao12and WANG Shuoyao12
1) School of Civil Engineering, Chongqing University, Chongqing 400045, P.R.China
2) Key Laboratory of New Technology for Construction of Cities in Mountain Area of Ministry of Education, Chongqing University, Chongqing 400045, P.R.China
关键词:
岩土工程能量桩饱和黏土固结不排水剪切特性粗糙度温度效应超固结比
Keywords:
geotechnical engineering energy pile saturated clay consolidated undrained shear behavior roughness temperature effect over consolidation ratio (OCR)
分类号:
TU432
DOI:
10.3724/SP.J.1249.2022.01013
文献标志码:
A
摘要:
为了研究界面粗糙度、温度变化和超固结比(over consolidation ratio, OCR)对桩-土界面剪切强度、孔压响应和体积变形影响,采用应变式直剪仪对直剪盒加以改造,分别对光滑和粗糙两种混凝土-饱和黏土界面进行非等温固结不排水剪切试验. 结果表明,当时,随着OCR值减小,从室温升温或者降温和提高界面粗糙度均能提高界面剪切强度,孔隙水压力为正值,升温或者降温时的孔压均低于室温情况;当时,孔隙水压力为负值,在剪切过程中发生剪胀,升温或者降温反而会略微降低界面的剪切强度. 当时,增大界面粗糙度或升高温度,都会削弱土体的软化现象,而降温会强化土体的软化现象;当时,界面剪切性质基本不变. 说明界面粗糙度和温度变化对界面剪切特性的影响只在OCR值较小时比较显著,当OCR值足够大时,影响基本可以忽略.
Abstract:
In order to study the effects of interface roughness, temperature change and over consolidation ratio (OCR) on pile-soil interface shear strength, pore pressure response and volume change, the direct shear box was modified by strain direct shear instrument, and non isothermal consolidated undrained shear tests were carried out on smooth and rough concrete saturated clay interfaces respectively. The results show that when , decreasing OCR value, heating or cooling and increasing interface roughness can improve interface shear strength, pore water pressure is positive, and the pore pressure after heating or cooling is lower than that at room temperature. When , the pore water pressure is negative, and dilatancy occurs in the shear process. On the contrary, heating or cooling will slightly reduce the shear strength of the interface. When , increasing the interface roughness and temperature will weaken the softening phenomenon of soil, and cooling will strengthen the softening phenomenon of soil. When , the interfacial shear properties are basically unchanged. It means that the influence of interface roughness and temperature change on interface shear characteristics is significant only when the OCR value is small, and the influence can be basically ignored when the OCR value is large enough.

参考文献/References:

[1] HEINZ B. Geothermal geotechnics for urban undergrounds [J]. Procedia Engineering, 2016, 165: 747-764.
[2] AMIS T, LOVERIDGE F. Energy piles and other thermal foundations for GSHP [J]. REHVA Journal, 2014(1): 32-35.
[3] 刘汉龙,孔纲强,吴宏伟.能量桩工程应用研究进展及PCC能量桩技术开发[J].岩土工程学报,2014,36(1):176-181.LIU Hanlong, KONG Gangqiang, WU Hongwei. Applications of energy piles and technical development of PCC energy piles [J]. Chinese Journal of Geotechnical Engineering. 2014, 36(1): 176-181.(in Chinese)
[4] SADOVSKIY A V. Adfreeze between ground and foundation materials [C]// The 2nd International Conforance on Permafrost Yakutsk. [S.l.: s.n.], 1973: 650-653.
[5] YAVARI N,TANG A M,PEREIRA J M,et al. Effect of temperature on the shear strength of soils and the soil-structure interface [J]. Canadian Geotechnical Journal, 2016, 53(7): 1186-1194.
[6] XIAO Suguang, MUHANNAD T S, MOHAMMED A. Investigation of effects of temperature cycles on soil-concrete interface behavior using direct shear tests [J].Soils and Foundations, 2019, 59(5): 1213-1227.
[7] NOBLE C A, DEMIREL T. Effect of temperature on strength behavior of cohesive soil [M]. Washington D C, USA: Highway Research Board Press, 1969: 204-219.
[8] UCHAIPICHAT A, KHALILI N. Experimental investingation of thermo-hydro-mechanical behaviour of an unsaturated silt [J].Géotechnique, 2009, 59(4): 339-353.
[9] KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay [J]. Soils and Foundations, 1995, 35(1): 147-162.
[10] 费 康,周 莹,付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报. 2020,42(9):1679-1686.
FEI Kang, ZHOU Ying, FU Changyun. Experimental study on effect of temperature on shear behavior of s-aturated clays [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686.(in Chinese)
[11] 王京凯. 饱和黏土及桩土界面非等温剪切试验及模型研究[D]. 重庆:重庆大学,2020.
WANG Jingkai. Non-isothermal shear test and model study of saturated clay and pile-soil interface [D]. Chongqing: Chongqing University, 2020.(in Chinese)
[12] UESUGI M, KISHIDA H, UCHIKAWA Y. Friction between dry sand and concrete under monotonic and repeated loading [J]. Soils and Foundations, 1990, 30(1): 115-128.
[13] HRYCIW R D, IRSYAM M. Behavior of sand particles around rigid ribbed inclusions during shear [J]. Soils and Foundations, 1993, 33(3): 1-13.
[14] CHEN X B, ZHANG J S, XIAO Y J, et al. Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests [J]. Canadian Geotechnical Journal, 2015, 52: 1122-1135.
[15] 金子豪,杨 奇,陈 琛,等. 粗糙度对混凝土-砂土接触面力学特性的影响试验研究[J]. 岩石力学与工程学报. 2018,37(3):754-766.
JIN Zihao, YANG Qi, CHEN Chen,et al. Experime-ntal study on effects of the roughness on mechanical behaviors of concrete-sand interface [J]. Chinese Journal of Rock Mechanics and Engineering. 2018, 37(3): 754-766.(in Chinese)
[16] 张志超. 饱和岩土体多场耦合热力学本构理论及模型研究[D]. 北京:清华大学,2013.
ZHANG Zhichao.Research on multi-field coupling thermodynamic constitutive theory and model for saturated geomaterials [D]. Beijing: Tsinghua University, 2013.(in Chinese)
[17] 王玉萍. 多年冻土地区桩-土界面剪切特性试验研究[D].兰州:兰州交通大学,2014.
WANG Yuping. Experimental research on the shear characteristics of pile-soil interface in permafrost region [D]. Lanzhou: Lanzhou Jiaotong University, 2014.(in Chinese)
[18] TANAKA N, GRAHAM J, CRILLY T. Stress-strain behavior of reconstituted illitic clay at different temperatures [J].Engineering Geology, 1997, 47(4): 339-350.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]杨涛,陈洋,孔纲强.悬浮能量桩-筏基础的热-力学特性数值模拟[J].深圳大学学报理工版,2022,39(1):67.[doi:10.3724/SP.J.1249.2022.01067]
 YANG Tao,CHEN Yang,and KONG Gangqiang.Numerical simulation of thermo-mechanical behavior of floating energy pile-raft foundation[J].Journal of Shenzhen University Science and Engineering,2022,39(1):67.[doi:10.3724/SP.J.1249.2022.01067]
[12]陈玉,孔纲强,孟永东,等.间歇与持续加热下含承台能量桩基础现场试验[J].深圳大学学报理工版,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]
 CHEN Yu,KONG Gangqiang,MENG Yongdong,et al.Field thermal response test of energy pile foundation with cap under intermittent and continuous heating[J].Journal of Shenzhen University Science and Engineering,2022,39(1):75.[doi:10.3724/SP.J.1249.2022.01075]

备注/Memo

备注/Memo:
Received:2021-10-12;Accepted:2021-11-30
Foundation:National Natural Science Foundation of China(51978104);Fundamental Research Funds for the Central Universities (2020CDJQY-A068)
Corresponding author:Professor ZHANG Zhichao.E-mail:zczhang15@cqu.edu.cn
Citation:WANG Xiaoqiang,ZHANG Zhichao,WANG Shuoyao.Analysis of undrained non-isothermal shear behavior of pile-soil interface [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 13-19.(in Chinese)
基金项目:国家自然科学基金资助项目(51978104); 中央高校基本科研业务费专项资金资助项目 (2020CDJQY-A068)
作者简介:王晓强(1990—),重庆大学硕士研究生.研究方向:能量桩的应用.E-mail:wxqcivil@qq.com
引 文:引用格式:王晓强,张志超,王烁堯.桩-土界面的非等温不排水剪切行为分析[J].深圳大学学报理工版,2022,39(1):13-19.
更新日期/Last Update: 2022-01-30