[1]钱七虎.能源地下结构与工程——助力“双碳”目标,赋能绿色城市[J].深圳大学学报理工版,2022,39(1):1-2.[doi:10.3724/SP.J.1249.2022.01001]
 QIAN Qihu.Energy geostructure engineering: promote carbon peak and neutrality, empower green cities[J].Journal of Shenzhen University Science and Engineering,2022,39(1):1-2.[doi:10.3724/SP.J.1249.2022.01001]
点击复制

能源地下结构与工程——助力“双碳”目标,赋能绿色城市
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第39卷
期数:
2022年第1期
页码:
1-2
栏目:
土木建筑工程
出版日期:
2022-01-12

文章信息/Info

Title:
Energy geostructure engineering: promote carbon peak and neutrality, empower green cities
文章编号:
202201001
作者:
钱七虎
中国人民解放军陆军工程大学,江苏南京 210001
Author(s):
QIAN Qihu
Army Engineering University of PLA, Nanjing 210001, Jiangsu Province, P.R.China
关键词:
岩土工程能源地下结构绿色建筑碳达峰碳中和
Keywords:
geotechnical engineering energy geostructure green building carbon peak carbon neutrality
分类号:
TU473
DOI:
10.3724/SP.J.1249.2022.01001
文献标志码:
A
摘要:
  面对全球气候变化和能源可持续发展的需求,2020年9月22日,习近平总书记在第七十五届联合国大会上就中国碳达峰、碳中和的目标做出了庄严承诺.随后,在“十四五”规划和“2035远景目标”中也明确提出:推动社会经济发展方式发生深刻变革,向着绿色低碳的方向转型发展.高效开发、利用清洁能源是达成“双碳”目标至关重要的途径.
  能源地下结构将热交换器与地下结构物相结合,经济高效地利用可再生浅层地热能向周边建筑供能,它可以和公共建筑、住宅、城市地下空间以及隧道工程进行整合,从而为临近建筑乃至城市区域进行能源供给.2021年9月,中国国家能源局发布的《关于促进地热能开发利用的若干意见》指出,到2025年,地热能供暖(制冷)面积比2020年增加50%;到2035年,地热能供暖(制冷)面积力争比2025年翻一番. 可见,基于能源地下结构的浅层地热能开发利用具有巨大的想象空间.当前,中国已有诸多能源地下结构与工程项目进入规模化开发的阶段.例如,上海世博会轴能源桩项目、雄安新区浅层地热能综合开发利用,以及大部分路段修建于软岩隧道和高温隧道中的川藏铁路工程等等.
  然而,在这些重大工程中,能源地下结构复杂程度与工程规模的不断增加,以及岩土体环境的高度不确定性均给能源岩土的研究和实践带来了前所未有的挑战.作为一门将能源工程与岩土力学相结合的应用基础学科,能源地下结构与工程涉及岩土体变形破坏机理、物质和能量的输运规律,以及岩土孔隙中的化学生物过程等多个学科领域的交叉.因此,面对这些挑战,能源地下结构与工程的发展一定要做到“跨出去、请进来”:一方面,一定要将传统岩土力学相关学科的扎实基础发挥出来,在习近平总书记“四个面向”的指引下,去发现并解决跨学科的重大问题;另一方面,一定要广泛吸纳其他学科的先进知识技术,“虚怀若谷、兼容并包”,从理论体系、技术发明及生产实践多个层面实现真正的学科融汇交叉.
  “能源地下结构与工程专辑”能为科研人员提供一个开放交流的平台,协助相关从业者打开视野,关注交叉学科发展动态,聚焦重大前沿科技问题,同时帮助大家思考如何通过能源地下结构与工程学科的建设来早日实现“双碳”目标,具有承前启后的重要意义.
Abstract:
  Facing global climate change and the needs of sustainable energy development, President XI Jinping made a solemn commitment to China’s carbon peak and neutrality goals at the 75th Session United Nations General Assembly on 22 September 2020. Subsequently, the “14th Five-Year Plan” and the “2035 Vision” also clearly stated the need to promote profound changes in the mode of social and economic development, and accelerate the transition to green and low-carbon development. Efficient exploitation and utilization of clean energy are crucial for achieving the carbon peak and neutrality goals.
  Energy geostructures have the potential to act as integrated geothermal heat exchangers to provide renewable heating and cooling to the surrounding built environment. Coupling public buildings, residential buildings, urban underground spaces, and tunnel projects, energy geostructures can provide energy for entire urban areas. In September 2021, the“Several Opinions on Promoting the Development and Utilization of Geothermal Energy”issued by the National Energy Administration of China pointed out that by 2025, the area of geothermal energy heating (cooling) will increase by 50% compared with 2020, by 2035, the area of geothermal energy heating (cooling) will be doubled compared with 2025. It can be expected that utilizing shallow geothermal energy by developing energy geostructures is a promising way forward. At present, many energy geostructure-related engineering projects have already entered the stage of large-scale utilization and development in China. For example, the energy pile of the Expo Axis project was built at the Shanghai World Expo, shallow geothermal energy has been developed and utilized at Xiong’an New Area, and energy tunnels are being constructed at the Sichuan-Tibet Railway project.
  However, in these major construction projects, the complexity of the energy geostructures and the increasing scale of the projects, together with the uncertainties of the geotechnical environment, have placed energy geotechnical research and its application in a more challenging position than ever before. Energy geostructure engineering is a multi-disciplinary applied fundamental subject that combines both energy engineering and geotechnical engineering. It involves the intersection of multiple disciplines, such as the mechanism of the deformation and fracture of rock and soil, the laws of energy and matter transport, and the biochemical processes in rock and soil pores. Therefore, in response to these challenges, the development of this subject needs to be “confident and proactive, humble and receptive”. On one hand, under the guidance of President XI Jinping, scientific and technological development must target global scientific frontiers, serve the main economic battlefield, strive to fulfill the significant needs of the country and benefit people’s lives and health. The solid knowledge of traditional geotechnical engineering should never be underestimated, rather, it should be given significant weight and be leveraged to discover and examine cross-disciplinary issues. On the other hand, absorbing and taking advantage of the advanced knowledge and technologies of other disciplines is essential to implement the required cross-disciplinary studies in their theoretical, technical, and practical aspects.
  The launch of this “Special Issue on Energy Geostructures” is able to provide scientists and researchers a platform to communicate and interact, broaden horizons, update cross-disciplinary development, and focus on cutting-edge scientific and technological problems. The special issue also enables scientists and researchers to offer suggestions on how to achieve the “carbon peak and neutrality goals” through the development of energy geostructure engineering, shedding light on the future path of the development of this subject.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
作者简介:钱七虎(1937—),中国工程院院士,中国人民解放军陆军工程大学教授、博士生导师.研究方向:隧道及地下工程建设.E-mail:gcyqqh@163.comProfessor QIAN Qihu, academician of Chinese Academy of Engineering. Research field: tunnel and underground engineering construction. E-mail: gcyqqh@163.com
引 文:钱七虎.能源地下结构与工程——助力“双碳”目标,赋能绿色城市[J].深圳大学学报理工版,2022,39(1):1-2.Citation:QIAN Qihu.Energy geostructure engineering: promote carbon peak and neutrality, empower green cities [J]. Journal of Shenzhen University Science and Engineering, 2022, 39(1): 1-2.(in Chinese)
更新日期/Last Update: 2022-01-30