[1]闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J].深圳大学学报理工版,2021,38(6):649-657.[doi:10.3724/SP.J.1249.2021.06649]
 YAN Shaohui,WANG Ertong,et al.A chaotic system with attractor coexistence and its synchronization circuit implementation[J].Journal of Shenzhen University Science and Engineering,2021,38(6):649-657.[doi:10.3724/SP.J.1249.2021.06649]
点击复制

一个吸引子共存的混沌系统及其同步电路实现()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第6期
页码:
649-657
栏目:
电子与信息科学
出版日期:
2021-11-15

文章信息/Info

Title:
A chaotic system with attractor coexistence and its synchronization circuit implementation
文章编号:
202106013
作者:
闫少辉12王尔童1孙溪1施万林1宋震龙1
1)西北师范大学物理与电子工程学院,甘肃兰州 730070
2)甘肃省智能信息技术与应用工程研究中心,甘肃兰州 730070
Author(s):
YAN Shaohui1 2 WANG Ertong1 SUN Xi1 SHI Wanlin1 and SONG Zhenlong1
1) College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, Gansu Province, P.R.China
2) Engineering Research Centre of Gansu Province for Intelligent Information Technology and Application, Lanzhou 730070, Gansu Province, P.R.China
关键词:
混沌反单调性吸引子共存线性反馈同步控制电路实现
Keywords:
chaotic anti-monotonic characteristics attractor coexistence linear feedback synchronization control circuit implementation
分类号:
TP273;O415.5
DOI:
10.3724/SP.J.1249.2021.06649
文献标志码:
A
摘要:
基于TANG系统构建一个三维自治混沌系统,通过平衡点、相图、Lyapunov指数谱、分岔图和复杂度,分析系统的动力学特性.结果发现,本研究构建的三维自治混沌系统的动力学行为较复杂,具有与原系统不同的拓扑结构、分岔反单调特性和吸引子共存现象.该系统具有混沌吸引子与点吸引子共存的现象,通过分析共存吸引子选择更适合混沌保密通信的初始值.利用现场可编程门阵列(field programmable gate array, FPGA)实现系统的实际数字电路,实验结果与数值仿真一致,证明所构建的系统可行.该系统对初始值及系统参数极敏感,且具有丰富的动力学行为,适用于混沌保密通信领域.采用线性反馈法对该系统进行同步控制,并利用Multisim软件实现了同步电路仿真,仿真结果与数值分析一致,为该系统在同步保密通信领域的应用奠定了理论基础.
Abstract:
We construct a three-dimensional chaotic system based on TANG chaotic system and analyze the system dynamics based on the equilibrium points, phase diagram, Lyapunov exponential spectrum, bifurcation diagram, and complexity. The more complexly dynamic behaviors indicate that our designed system has different topology, bifurcation anti-monotonic property and attractor coexistence phenomenon from TANG system. The system has the coexistence of chaotic attractor and point attractor and can select the initial value that is suitable for chaotic secure communication by analyzing the coexistence attractor. The actual digital circuit is implemented with field programmable gate array (FPGA). The system is extremely sensitive to the selections of initial values and system parameters and has good and rich dynamic behavior, which is suitable for the field of chaotic confidential communication. The linear feedback method is used to control the system synchronous and the simulation of synchronous circuit is realized by Multisim software. The simulation results are consistent with the numerical analysis, which lays a theoretical foundation for the application of the system in the field of synchronized confidential communication.

参考文献/References:

[1] 鲜永菊,扶坤荣,徐昌彪.一个具有多翼吸引子的四维多稳态超混沌系统[J].振动与冲击,2021,40(1):15-22,38.
XIAN Yongju, FU Kunrong, XU Changbiao. A 4-D multi-stable hyper-chaotic system with multi-wing attractors[J]. Journal of Vibration and Shock, 2021, 40(1): 15-22, 38.(in Chinese)
[2] 王梦蛟,邓勇,李志军,等.基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现[J].电子与信息学报,2020,42(4):818-826.
WANG Mengjiao, DENG Yong, LI Zhijun, et al. Bursting, coexistence analysis and DSP implementation of Duffing system based on hyperbolic-tangent memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 818-826.(in Chinese)
[3] 颜闽秀,徐辉.共存吸引子个数可调的混沌系统[J].计算物理,2021,38(2):244-252.
YAN Minxiu, XU Hui. A chaotic system with adjustable number of coexisting attractors[J]. Chinese Journal of Computational Physics, 2021, 38(2): 244-252.(in Chinese)
[4] 高俊山,宋歌,邓立为.具有未知参数的混沌系统的有限时间滑模同步控制[J].控制与决策,2017,32(1):149-156.
GAO Junshan, SONG Ge, DENG Liwei. Finite time sliding mode synchronization control of chaotic systems with uncertain parameters[J]. Control and Decision, 2017, 32(1): 149-156.(in Chinese)
[5] 秦卫阳,孙涛,焦旭东,等.一类动力学系统通过函数耦合实现混沌同步[J].物理学报,2012,61(9):34-38.
QIN Weiyang, SUN Tao, JIAO Xudong, et al. Chaos synchronization by function coupling in a class of nonlinear dynamical system[J]. Acta Physica Sinica, 2012, 61(9): 34-38.(in Chinese)
[6] 郑皓洲,胡进峰,徐威,等.一类新型超混沌系统的非线性反馈同步研究[J].电子与信息学报,2011,33(4):844-848.
ZHENG Haozhou, HU Jinfeng, XU Wei, et al. Study on synchronization of a new class of hyperchaotic systems using nonlinear feedback control[J]. Journal of Electronics and Information Technology, 2011, 33(4): 844-848.(in Chinese)
[7] 黄丽莲,齐雪.基于自适应滑模控制的不同维分数阶混沌系统的同步[J].物理学报,2013,62(8):61-67.
HUANG Lilian, QI Xue. The synchronization of fractional order chaotic systems with different orders based on adaptive sliding mode control[J]. Acta Physics Sinica, 2013, 62(8): 61-67.(in Chinese)
[8] 陈秀琴,赵娜,李钧涛.基于动态补偿器的不确定系统的同步控制[J].控制工程,2020,27(9):1509-1512.
CHEN Xiuqin, ZHAO Na, LI Juntao. Synchronous control of uncertain systems based on dynamic compensator[J]. Control Engineering of China, 2020, 27(9): 1509-1512.(in Chinese)
[9] 王发强,刘崇新.Liu混沌系统的线性反馈同步控制及电路实验的研究[J].物理学报,2006,55(10):5055-5060.
WANG Faqiang, LIU Chongxin. Synchronization of Liu chaotic system based on linear feedback control and its experimental verification[J]. Acta Physica Sinica, 2006, 55(10):5055-5060.(in Chinese)
[10] 唐良瑞,李静,樊冰,等.新三维混沌系统及其电路仿真[J].物理学报,2009,58(2):785-793.
TANG Liangrui, LI Jing, FAN Bing, et al. A new three-dimensional chaotic system and its circuit simulation[J]. Acta Physica Sinica, 2009, 58(2): 785-793.(in Chinese)
[11] 孙克辉,贺少波,朱从旭,等.基于C0算法的混沌系统复杂度特性分析[J].电子学报,2013,41(9):1765-1771.
SUN Kehui, HE Shaobo, ZHU Congxu, et al. Analysis of chaotic complexity characteristics based on C0 algorithm[J]. Acta Electronica Sinica, 2013, 41(9): 1765-1771.(in Chinese)
[12] DAWSON S P, GREBOGI C, YORKE J A, et al. Antimonotonicity: inevitable reversals of period doubling cascades[J]. Physics Letters A, 1992, 162(3): 249-254.
[13] 鲜永菊,莫运辉,徐昌彪,等.具有多种吸引子共存类型的新型四维混沌系统[J].华南理工大学学报自然科学版,2020,48(3):32-43.
XIAN Yongju, MO Yuhui, XU Changbiao, et al. New four-dimensional chaotic system with multiple types of coexistence of attractor[J]. Journal of South China University of Technology Natural Science Edition, 2020, 48(3): 32-43.(in Chinese)
[14] 高智中.超混沌TANG系统的分析及其线性反馈同步与其电路实现[J].中山大学学报自然科学版,2020,59(1):15-23.
GAO Zhizhong. Analysis, linear feedback synchronization and circuit realization of a hyperchaotic TANG’s system[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(1): 15-23.(in Chinese)
[15] 颜闽秀,徐辉.四翼混沌系统及其Hopf分岔控制[J].深圳大学学报理工版,2021,38(2):180-187.
YAN Minxiu, XU Hui. Four-wing chaotic system and its Hopf bifurcation control[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(2): 180-187.(in Chinese)
[16] 毛北行,王战伟.一类分数阶复杂网络系统的有限时间同步控制[J].深圳大学学报理工版,2016,33(1):96-101.
MAO Beixing, WANG Zhanwei. Finite-time synchronization control of a class of fractional-order complex network systems[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 96-101.(in Chinese)
[17] LI Chunlai, LI Zhaoyu, FENG Wei, et al. Dynamical behaveior and image encryption application of a memristor-based circuit system[J]. AEU: International Journal of Electronics and Communications, 2019, 110: 152861.
[18] 左兆伦,俞翔.混沌同步控制策略构造方法研究[J].振动与冲击,2020,39(13):170-175.
ZUO Zhaolun, YU Xiang. Construction method for chaos synchronization control strategy[J]. Vibration and Shock, 2020, 39(13): 170-175.(in Chinese)
[19] TAKHI H, KEMIH K, MOYSIS L, et al. Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system[J]. Mathematics and Computers in Simulation, 2021, 181: 150-169.
[20] YAO Qijia. Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control[J]. Chaos Solitons & Fractals, 2020, 142: 110372.
[21] ZHU Zhenyu, ZHAO Zhanshan, ZHANG Jing, et al. Adaptive fuzzy control design for synchronization of chaotic time delay system[J]. Information Sciences, 2020, 535: 225-241.
[22] WANG Ning, ZHANG Guoshan, REN Ling, et al, Coexisting asymmetric behavior and free control in a simple 3-D chaotic system[J]. AEU: International Journal of Electronics and Communications, 2020, 122: 153234.

相似文献/References:

[1]张晓明,王赫,彭建华.一个广义立方映像系统[J].深圳大学学报理工版,2009,26(3):327.
 ZHANG Xiao-ming,WANG He,and PENG Jian-hua.A generalized cubic map[J].Journal of Shenzhen University Science and Engineering,2009,26(6):327.
[2]田传俊,陈关荣.时变离散时空系统的混沌性[J].深圳大学学报理工版,2013,30(No.5(441-550)):469.[doi:10.3724/SP.J.1249.2013.05469]
 Tian Chuanjun and Chen Guanrong.Chaos of time-varying discrete spatiotemporal systems[J].Journal of Shenzhen University Science and Engineering,2013,30(6):469.[doi:10.3724/SP.J.1249.2013.05469]
[3]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(6):475.[doi:10.3724/SP.J.1249.2013.05475]
[4]朱涛,张广军,姚宏,等.滑模控制的时滞分数阶金融系统混沌同步[J].深圳大学学报理工版,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
 Zhu Tao,Zhang Guangjun,Yao Hong,et al.Chaos synchronization of fractional order financial systems with time-delay based on sliding control[J].Journal of Shenzhen University Science and Engineering,2014,31(6):626.[doi:10.3724/SP.J.1249.2014.06626]
[5]张晓明,等.延迟反馈法控制混沌的解析研究[J].深圳大学学报理工版,2004,21(1):43.
 ZHANG Xiao-ming,HUANG De-yun,et al.Analytic study of controlling chaos via variable time-delayed feedback method[J].Journal of Shenzhen University Science and Engineering,2004,21(6):43.
[6]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(6):51.[doi:10.3724/SP.J.1249.2020.01051]
[7]王驿宣,等.色散反馈微腔激光器产生无时延特征宽带混沌[J].深圳大学学报理工版,2021,38(3):252.[doi:10.3724/SP.J.1249.2021.03252]
 WANG Yixuan,WANG Daming,et al.Generation of wideband chaos without time delay signature using the microlaser with dispersive optical feedback[J].Journal of Shenzhen University Science and Engineering,2021,38(6):252.[doi:10.3724/SP.J.1249.2021.03252]
[8]曹可,赖强,赖聪.含多吸引子的忆阻混沌系统的分析与实现[J].深圳大学学报理工版,2022,39(4):480.[doi:10.3724/SP.J.1249.2022.04480]
 CAO Ke,LAI Qiang,and LAI Cong.Analysis and implementation of memristive chaotic system with multiple attractors[J].Journal of Shenzhen University Science and Engineering,2022,39(6):480.[doi:10.3724/SP.J.1249.2022.04480]

备注/Memo

备注/Memo:
Received:2021-03-22;Accepted:2021-06-10;Online(CNKI):2021-09-26
Foundation:Natural Science Foundation of Gansu Province (20JR5RA531)
Corresponding author:Associate professor YAN Shaohui. E-mail: 18176428@qq.com
Citation:YAN Shaohui, WANG Ertong, SUN Xi, et al. A chaotic system with attractor coexistence and its synchronization circuit implementation[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(6): 649-657.(in Chinese)
基金项目:甘肃省自然科学基金资助项目(20JR5RA531)
作者简介:闫少辉(1980—),西北师范大学副教授、博士.研究方向:非线性电路及应用.E-mail: 18176428@qq.com
引文:闫少辉,王尔童,孙溪,等.一个吸引子共存的混沌系统及其同步电路实现[J]. 深圳大学学报理工版,2021,38(6):649-657.
更新日期/Last Update: 2021-11-30