参考文献/References:
[1] 匡立春,侯连华,杨智,等.陆相页岩油储层评价关键参数及方法[J].石油学报,2021, 42(1):1-14.
KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1):1-14.(in Chinese)
[2] US Energy Information Administration (EIA). How much shale (tight) oil is produced in the united states?[EB/OL]. (2021-09-20)[2021-09-25]. https://www.eia.gov/tools/faqs/faq.php?id=847&t=6.
[3] 刘晓慧,夏鹏,朱清.2020年全球石油市场形势及未来走势分析[J].国土资源情报,2021(5):3-10.
LIU Xiaohui, XIA Peng, ZHU Qing. Global oil market situation and future trend in 2020[J]. Land and Resources Information, 2021(5):3-10.(in Chinese)
[4] 金旭,李国欣,孟思炜,等.陆相页岩油可动用性微观综合评价[J].石油勘探与开发,2021, 48(1):222-232.
JIN Xu, LI Guoxin, MENG Siwei, et al.Microscale comprehensive evaluation of continental shale oil recoverability[J].Petroleum Exploration and Development, 2021, 48(1):222-232.(in Chinese)
[5] 杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015, 32(3):257-265.
YANG Zhi, ZOU Caineng, WU Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3):257-265.(in Chinese)
[6] 孙中良,王芙蓉,何生,等.潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J].深圳大学学报理工版,2019, 36(3):289-297.
SUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3):289-297. (in Chinese)
[7] WU Keliu, CHEN Zangxing, LI Jing, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
[8] WANG Han, SU Yuliang, WANG Wendong, et al. Enhanced water flow and apparent viscosity model considering wettability and shape effects[J]. Fuel, 2019, 253: 1351-60.
[9] WANG Han, SU Yuliang, ZHAO Zhenfeng, et al. Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction[J]. Journal of Petroleum Science and Engineering, 2019,176:1041-1052.
[10] WANG Han, SU Yuliang, WANG Wendong, et al. Relative permeability model of oil-water flow in nanoporous media considering multi-mechanisms[J]. Journal of Petroleum Science and Engineering, 2019,183: 106361.
[11] ZHANG Tao, LI Xiangfang, YIN Ying, et al. The transport behaviors of oil in nanopores and nanoporous media of shale[J]. Fuel, 2019, 242: 305-315.
[12] CUI Jiangfeng, WU Keliu. Equivalent permeability of shale rocks: simple and accurate empirical coupling of organic and inorganic matter[J]. Chemical Engineering Science, 2020, 216: 115491.
[13] JAVADPOUR F, SINGH H, RABBANI A, et al. Gas flow models of shale: a review[J]. Energy & Fuels, 2021, 35(4):2999-3010.
[14] WANG Sen, JAVADPOUR F, FENG Qihong. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181: 741-58.
[15] TOCCI G, JOLY L, MICHAELIDES A. Friction of water on graphene and hexagonal Boron nitride from ab initio methods: very different slippage despite very similar interface structures[J]. Nano Letters, 2014,14(12):6872-6877.
[16] NEEK-AMAL M, PEETERS F M, GRIGORIEVA I V, et al. Commensurability effects in viscosity of nanoconfined water[J]. ACS Nano, 2016, 10(3):3685-3692.
[17] THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport through Carbon nanotubes[J]. Nano Letters, 2008, 8(9):2788-2793.
[18] SECCHI E, MARBACH S, NIGUES A, et al.Massive radius-dependent flow slippage in Carbon nanotubes[J]. Nature, 2016, 537(7619):210-213.
[19] HUANG D M, SENDNER C, HORINEK D, et al.Water slippage versus contact angle: a quasi universal relationship[J]. Physical Review Letters, 2008, 101(22):226101.
[20] ZHANG Qi, SU Yuliang, WANG Wendong, et al. Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 224-234.
[21] CUI Jiangfeng, SANG Qian, LI Yajun, et al. Liquid permeability of organic nanopores in shale: calculation and analysis[J]. Fuel, 2017, 202: 426-434.
[22] BLAKE T D. Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered[J]. Colloids and surfaces, 1990,47:135-145.
[23] PHIL G T M A. Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004,20(8):3477-3482.
[24] ALEC KUCALA M J M. The influence of interfacial slip on two-phase flow in rough pores[J]. Water Resources Research, 2017,53(8):7281-7295.
[25] CHOI C H, WESTIN K A, BREUER K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids, 2003, 15(10): 2897-2902.
[26] HU Haibao, WANG Dezheng, REN Feng, et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble[J]. International Journal of Multiphase Flow, 2018, 104: 166-173.
[27] RANJIT N K, SHIT G C, SINHA A. Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions[J]. Chemical Engineering Science, 2017, 171: 545-557.
[28] CHO J H, LAW B M, RIEUTORD F.Dipole-dependent slip of newtonian liquids at smooth solid hydrophobic surfaces[J]. Physical Review Letters, 2004, 92(16):166102.
[29] PRIEZJEV N V, TROIAN S M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Physical Review Letters,2004, 92(1):018302.
[30] WU Keliu, CHEN Zhangxin, LI Jing,et al.Nanoconfinement effect on n-Alkane flow[J]. Journal of Physical Chemistry C, 2019, 123(26):16456-16461.
[31] GUO Zhaoli, ZHAO T S, SHI Yong.Temperature dependence of the velocity boundary condition for nanoscale fluid flows[J]. Physical Review E, 2005, 72(3 Pt 2):036301.
[32] KANNAM S K, TODD B D, HANSEN J S, et al. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations[J]. The Journal of Chemical Physics, 2012, 136(2):024705.
[33] RUCKENSTEIN E R P. On the no-slip boundary condition of hydrodynamics[J]. Journal of Colloid and Interface Science, 1983, 96(2):488-491.
[34] FALK K, SEDLMEIER F, JOLY L, et al. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction[J]. Nano Letters, 2010, 10(10):4067-4073.
[35] MAJUMDER M, CHOPRA N, ANDREWS R,et al.Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(764):44.
[36] WANG Sen, JAVADPOUR F, FENG Qihong. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
[37] ZHANG Tao, LI Xiangfang, SUN Zheng, et al. An analytical model for relative permeability in water-wet nanoporous media[J]. Chemical Engineering Science, 2017, 174: 1-12.
[38] ZHANG Tao, JAVADPOUR F, LI Xiangfang,et al.Mesoscopic method to study water flow in nanochannels with different wettability[J].Physical Review E, 2020, 102(1):013306.
[39] ZAKIROV T, GALEEV A. Absolute permeability calculations in micro-computed tomography models of sandstones by Navier-Stokes and lattice Boltzmann equations[J]. International Journal of Heat and Mass Transfer, 2019, 129: 415-426.
[40] RABBANI A, MOSTAGHIMI P, ARMSTRONG R T. Pore network extraction using geometrical domain decomposition[J]. Advances in Water Resources, 2019, 123: 70-83.
[41] WANG Wendong, WANG Han, SU Yuliang, et al. Simulation of liquid flow transport in nanoscale porous media using lattice Boltzmann method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021,121:128-138.
[42] ZHANG We, FENG Qihong, WANG Sen, et al. Oil diffusion in shale nanopores: insight of molecular dynamics simulation[J]. Journal of Molecular Liquids, 2019, 290: 111183.
[43] ZHAN Shiyuan, SU Yuliang, JIN Zhehui, et al. Effect of water film on oil flow in quartz nanopores from molecular perspectives[J]. Fuel, 2020, 262: 116560.
[44] WANG Hui, WANG Xiaoqi, JIN Xu, et al. Molecular dynamics simulation of diffusion of shale oils in montmorillonite[J]. The Journal of Physical Chemistry, 2016, 120(16): 8986-8991.
[45] ZHAN Shiyuan, SU Yuliang, LU Mingjing, et al. Effect of surface type on the flow characteristics in shale nanopores[J]. Geofluids, 2021(2):1-12.
[46] JIN Zhehui, FIROOZABADI A.Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations[J]. The Journal of Chemical Physics,2015, 143(10):104315.
[47] JIN Zhehui. Effect of nano-confinement on high pressure methane flow characteristics[J]. Jounral of Natural Gas Science and Engineering, 2017, 45: 575-583.
[48] NAN Yiling, LI Wenhui, JIN Zhehui. Slip length of methane flow under shale reservoir conditions: effect of pore size and pressure[J]. Fuel, 2020, 259: 116237.
[49] FALK K, SEDLMEIER F, JOLY L, et al. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(40):14261-14272.
[50] CASTEZ M F, WINOGRAD E A, SNCHEZ V. Methane flow through organic-rich nanopores: the key role of atomic-scale roughness[J]. The Journal of Physical Chemistry C, 2017, 121(51): 28527-28536.
[51] SONG Wenhui, YAO Bowei, YAO Jun, et al. Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir[J]. Chemical Engineering Journal, 2018, 352, 644-654.
[52] JOSEPH S, ALURU N R. Why are carbon nanotubes fast transporters of water?[J]. Nano Letters, 2008, 8(2):452-458.
[53] YU Hao, XU Hengyu, FAN Jingchun, et al. Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations[J]. Energy Fuels, 2020,35(2), 911-943.
[54] KELEMEN S, AFEWORKI M, GORBATY M, et al. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods[J]. Energy Fuels, 2007, 21(3): 1548-1561.
[55] UNGERER P, COLLELL J, YIANNOURAKOU M J E, et al. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity[J]. Energy Fuels, 2015, 29(1): 91-105.
[56] BOUSIGE C, GHIMBEU C M, VIX-GUTERL C,et al.Realistic molecular model of kerogen’s nanostructure[J]. Nature Materials, 2016, 15(5):576-582.
[57] FALK K, COASNE B, PELLENQ R, et al. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media[J]. Nature Communications, 2015, 6(1):6949.
[58] HO T A, WANG Yifeng.Enhancement of oil flow in shale nanopores by manipulating friction and viscosity[J].Physical Chemistry Chemical Physics,2019, 21(24):12777-12786.
[59] LIU Jie, ZHAO Yi, YANG Yongfei, et al. Multicomponent shale oil flow in real kerogen structures via molecular dynamic simulation[J].Energies, 2020, 13(15): 3815.
[60] OBLIGER A, PELLENQ R, ULM F J, et al.Free volume theory of hydrocarbon mixture transport in nanoporous materials[J]. The Journal of Physical Chemistry Letters, 2016, 7(19):3712-3717.
[61] OBLIGER A, ULM F J, PELLENQ R.Impact of nano-porosity on hydrocarbon transport in shales’ organic matter[J]. Nano Letters, 2018, 18(2):832-837.
[62] LIU Haihu, JU Yaping, WANG Ningning, et al.Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference[J]. Physical Review E, 2015, 92(3):033306.
[63] ZACHARIAH G T, PANDA D, SURASANI V K. Lattice Boltzmann simulations for invasion patterns during drying of capillary porous media[J]. Chemical Engineering Science, 2019, 196: 310-323.
[64] ZHAO Jianlin, KANG Qinjun, YAO Jun, et al. Lattice Boltzmann simulation of liquid flow in nanoporous media[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1131-1143.
[65] ZHAO Wen, JIA Chengzao, ZHANG Tao, et al. Effects of nanopore geometry on confined water flow: a view of lattice Boltzmann simulation[J]. Chemical Engineering Science, 2021, 230: 116183.
[66] CHENG Zhilin, NING Zhengfu, KANG D-H. Lattice Boltzmann simulation of water flow through rough nanopores[J]. Chemical Engineering Science, 2021, 236: 116329.
[67] YANG Yongfei, WANG Ke, ZHANG Lei, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251: 683-692.
[68] MIAO Xiuxiu, GERKE K M, SIZONENKO T O. A new way to parameterize hydraulic conductances of pore elements: a step towards creating pore-networks without pore shape simplifications[J]. Advances in Water Resources, 2017, 105: 162-172.
[69] ZHAO Jianlin, QIN Feifei, DEROME D, et al. Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method[J]. Advances in Water Resources, 2020, 145: 103738.
[70] WANG Han, SU Yuliang, WANG Wendong. Investigations on water imbibing into oil-saturated nanoporous media: coupling molecular interactions, the dynamic contact angle, and the entrance effect[J]. Industrial and Engineering Chemistry Research, 2021:60(4):1872-1883.
[71] WANG Xiangzeng, PENG Xiaolong, ZHANG Shoujiang, et al. Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir[J]. Fuel, 2018, 224: 280-288.
[72] ZHAN Shiyuan, SU Yuliang, JIN Zhehui, et al. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling[J]. Chemical Engineering Journal, 2020,395: 125053.
[73] ZHANG Tao, JAVADPOUR F, LI Jing, et al.Pore-scale perspective of gas/water two-phase flow in shale[J]. SPE Journal, 2021, 26(2):828-846.
相似文献/References:
[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(6):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(6):649.[doi:10.3724/SP.J.1249.2013.06649]
[3]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(6):266.[doi:10.3724/SP.J.1249.2015.03266]
[4]杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257.[doi:10.3724/SP.J.1249.2015.03257]
Yang Zhi,Zou Caineng,Wu Songtao,et al.Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J].Journal of Shenzhen University Science and Engineering,2015,32(6):257.[doi:10.3724/SP.J.1249.2015.03257]
[5]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(6):98.[doi:10.3724/SP.J.1249.2017.01098]
[6]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(6):91.[doi:10.3724/SP.J.1249.2017.01091]
[7]杨智,邹才能,付金华,等.基于原位转化/改质技术的陆相页岩选区评价——以鄂尔多斯盆地三叠系延长组7段页岩为例[J].深圳大学学报理工版,2017,34(3):221.[doi:10.3724/SP.J.1249.2017.03221]
Yang Zhi,Zou Caineng,Fu Jinhua,et al.Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: a case study of Yanchang-7 member in Ordos Basin[J].Journal of Shenzhen University Science and Engineering,2017,34(6):221.[doi:10.3724/SP.J.1249.2017.03221]
[8]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(6):362.[doi:10.3724/SP.J.1249.2018.04362]
[9]张继成,范佳乐,匡力,等.一种预测特高含水期开发指标的联解法[J].深圳大学学报理工版,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
ZHANG Jicheng,FAN Jiale,KUANG Li,et al.An integrated method for predicting the development index of extra-high water cut period[J].Journal of Shenzhen University Science and Engineering,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
[10]苏泽中,林加恩,柏明星,等.天然能量开发阶段的缝洞型油藏井间连通性分析[J].深圳大学学报理工版,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
SU Zezhong,LIN Jiaen,BAI Mingxing,et al.Inter-well connectivity analysis in carbonate fracture-vuggy reservoir in natural energy development stage[J].Journal of Shenzhen University Science and Engineering,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
[11]何小东,张景臣,王俊超,等.考虑天然裂缝条件下水平井压裂簇间距优化——以吉木萨尔页岩油为例[J].深圳大学学报理工版,2022,39(2):134.[doi:10.3724/SP.J.1249.2022.02134]
HE Xiaodong,ZHANG Jingchen,WANG Junchao,et al.Optimization of fracturing cluster spacing of horizontal wells with natural fractures: taking Jimusar shale oil as an example[J].Journal of Shenzhen University Science and Engineering,2022,39(6):134.[doi:10.3724/SP.J.1249.2022.02134]
[12]梁成钢,李菊花,陈依伟,等.基于朴素贝叶斯算法评估页岩油藏产能[J].深圳大学学报理工版,2023,40(1):66.[doi:10.3724/SP.J.1249.2023.01066]
LIANG Chenggang,LI Juhua,CHEN Yiwei,et al.Productivity evaluation based on naive Bayesian algorithm in shale reservoir[J].Journal of Shenzhen University Science and Engineering,2023,40(6):66.[doi:10.3724/SP.J.1249.2023.01066]