[1]苏玉亮,王瀚,詹世远,等.页岩油微尺度流动表征及模拟研究进展[J].深圳大学学报理工版,2021,38(6):579-589.[doi:10.3724/SP.J.1249.2021.06579]
 SU Yuliang,WANG Han,ZHAN Shiyuan,et al.Research progress on characterization and simulation of shale oil flow in microscale[J].Journal of Shenzhen University Science and Engineering,2021,38(6):579-589.[doi:10.3724/SP.J.1249.2021.06579]
点击复制

页岩油微尺度流动表征及模拟研究进展()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第6期
页码:
579-589
栏目:
环境与能源
出版日期:
2021-11-15

文章信息/Info

Title:
Research progress on characterization and simulation of shale oil flow in microscale
文章编号:
202106004
作者:
苏玉亮1王瀚1詹世远1 2王文东1徐纪龙1
1)中国石油大学(华东)石油工程学院, 山东青岛 266580
2)成都理工大学能源学院,四川成都 610059
Author(s):
SU Yuliang1 WANG Han1 ZHAN Shiyuan1 2 WANG Wendong1 and XU Jilong1
1) School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, P.R.China
2) College of Energy, Chengdu University of Technology, Chengdu 610059, Sichuan Province, P.R.China
关键词:
油田开发页岩油壁面滑移分子动力学模拟格子Boltzmann模拟孔隙网络模型
Keywords:
oilfield development shale oil boundary slip molecular dynamics simulation lattice Boltzmann simulation pore network model
分类号:
P618.13
DOI:
10.3724/SP.J.1249.2021.06579
文献标志码:
A
摘要:
明晰纳微空间受限流体流动机理、计算渗透率等参数对提高页岩油采收率至关重要.评述近年来页岩油微观流动机理和数值方法,讨论了固液分子间相互作用力导致壁面滑移和流体黏度/密度非均质性对页岩油流动过程的影响,总结了表征单纳米孔隙流体流动的4种理论模型(分区模型、有效黏度模型、表观黏度模型和表观滑移长度模型),以及直接模拟方法(分子动力学模拟方法和孔隙尺度格子Boltzmann 模拟方法)和间接模拟方法(孔隙网络模型和耦合直接-间接模拟方法)在研究流体在纳微多孔介质流动行为中的应用,探讨了各模拟方法的优缺点,并提出今后的研究方向.
Abstract:
Clarifying the mechanisms of confined fluid flow in nanoscale space and calculating the permeability and other microscopic parameters are crucial to enhance the recovery of shale oil, which have attracted great attention in recent years. We review the micro flow mechanisms and numerical methods of shale oil, and discuss the effects of the solid-liquid molecular interaction force which leads to boundary slip and viscosity/density heterogeneity on the shale oil flow behaviors. Firstly, we introduce the four analytical models of confined fluid flow in nanopores which are the region-separation model, the effective viscosity model, the apparent viscosity model and the apparent slip length model. Then, we summarize the simulation methods and the applications in the study of fluid flow in nanoporous media Among them, the direct simulation methods are the molecular dynamics simulation (MDS) method and the pore-scale lattice Boltzmann simulation method (LBM), and the indirect simulation methods are the pore network model (PNM) and the coupled direct-indirect simulation method . We discuss the advantages and disadvantages of each simulation method. Finally, on the basis of summarizing the advantages and disadvantages of research results, the future research directions are put forward.

参考文献/References:

[1] 匡立春,侯连华,杨智,等.陆相页岩油储层评价关键参数及方法[J].石油学报,2021, 42(1):1-14.
KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization[J]. Acta Petrolei Sinica, 2021, 42(1):1-14.(in Chinese)
[2] US Energy Information Administration (EIA). How much shale (tight) oil is produced in the united states?[EB/OL]. (2021-09-20)[2021-09-25]. https://www.eia.gov/tools/faqs/faq.php?id=847&t=6.
[3] 刘晓慧,夏鹏,朱清.2020年全球石油市场形势及未来走势分析[J].国土资源情报,2021(5):3-10.
LIU Xiaohui, XIA Peng, ZHU Qing. Global oil market situation and future trend in 2020[J]. Land and Resources Information, 2021(5):3-10.(in Chinese)
[4] 金旭,李国欣,孟思炜,等.陆相页岩油可动用性微观综合评价[J].石油勘探与开发,2021, 48(1):222-232.
JIN Xu, LI Guoxin, MENG Siwei, et al.Microscale comprehensive evaluation of continental shale oil recoverability[J].Petroleum Exploration and Development, 2021, 48(1):222-232.(in Chinese)
[5] 杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015, 32(3):257-265.
YANG Zhi, ZOU Caineng, WU Songtao, et al. Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3):257-265.(in Chinese)
[6] 孙中良,王芙蓉,何生,等.潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J].深圳大学学报理工版,2019, 36(3):289-297.
SUN Zhongliang, WANG Furong, HE Sheng, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3):289-297. (in Chinese)
[7] WU Keliu, CHEN Zangxing, LI Jing, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.
[8] WANG Han, SU Yuliang, WANG Wendong, et al. Enhanced water flow and apparent viscosity model considering wettability and shape effects[J]. Fuel, 2019, 253: 1351-60.
[9] WANG Han, SU Yuliang, ZHAO Zhenfeng, et al. Apparent permeability model for shale oil transport through elliptic nanopores considering wall-oil interaction[J]. Journal of Petroleum Science and Engineering, 2019,176:1041-1052.
[10] WANG Han, SU Yuliang, WANG Wendong, et al. Relative permeability model of oil-water flow in nanoporous media considering multi-mechanisms[J]. Journal of Petroleum Science and Engineering, 2019,183: 106361.
[11] ZHANG Tao, LI Xiangfang, YIN Ying, et al. The transport behaviors of oil in nanopores and nanoporous media of shale[J]. Fuel, 2019, 242: 305-315.
[12] CUI Jiangfeng, WU Keliu. Equivalent permeability of shale rocks: simple and accurate empirical coupling of organic and inorganic matter[J]. Chemical Engineering Science, 2020, 216: 115491.
[13] JAVADPOUR F, SINGH H, RABBANI A, et al. Gas flow models of shale: a review[J]. Energy & Fuels, 2021, 35(4):2999-3010.
[14] WANG Sen, JAVADPOUR F, FENG Qihong. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181: 741-58.
[15] TOCCI G, JOLY L, MICHAELIDES A. Friction of water on graphene and hexagonal Boron nitride from ab initio methods: very different slippage despite very similar interface structures[J]. Nano Letters, 2014,14(12):6872-6877.
[16] NEEK-AMAL M, PEETERS F M, GRIGORIEVA I V, et al. Commensurability effects in viscosity of nanoconfined water[J]. ACS Nano, 2016, 10(3):3685-3692.
[17] THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport through Carbon nanotubes[J]. Nano Letters, 2008, 8(9):2788-2793.
[18] SECCHI E, MARBACH S, NIGUES A, et al.Massive radius-dependent flow slippage in Carbon nanotubes[J]. Nature, 2016, 537(7619):210-213.
[19] HUANG D M, SENDNER C, HORINEK D, et al.Water slippage versus contact angle: a quasi universal relationship[J]. Physical Review Letters, 2008, 101(22):226101.
[20] ZHANG Qi, SU Yuliang, WANG Wendong, et al. Apparent permeability for liquid transport in nanopores of shale reservoirs: coupling flow enhancement and near wall flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 224-234.
[21] CUI Jiangfeng, SANG Qian, LI Yajun, et al. Liquid permeability of organic nanopores in shale: calculation and analysis[J]. Fuel, 2017, 202: 426-434.
[22] BLAKE T D. Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered[J]. Colloids and surfaces, 1990,47:135-145.
[23] PHIL G T M A. Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004,20(8):3477-3482.
[24] ALEC KUCALA M J M. The influence of interfacial slip on two-phase flow in rough pores[J]. Water Resources Research, 2017,53(8):7281-7295.
[25] CHOI C H, WESTIN K A, BREUER K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids, 2003, 15(10): 2897-2902.
[26] HU Haibao, WANG Dezheng, REN Feng, et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble[J]. International Journal of Multiphase Flow, 2018, 104: 166-173.
[27] RANJIT N K, SHIT G C, SINHA A. Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions[J]. Chemical Engineering Science, 2017, 171: 545-557.
[28] CHO J H, LAW B M, RIEUTORD F.Dipole-dependent slip of newtonian liquids at smooth solid hydrophobic surfaces[J]. Physical Review Letters, 2004, 92(16):166102.
[29] PRIEZJEV N V, TROIAN S M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Physical Review Letters,2004, 92(1):018302.
[30] WU Keliu, CHEN Zhangxin, LI Jing,et al.Nanoconfinement effect on n-Alkane flow[J]. Journal of Physical Chemistry C, 2019, 123(26):16456-16461.
[31] GUO Zhaoli, ZHAO T S, SHI Yong.Temperature dependence of the velocity boundary condition for nanoscale fluid flows[J]. Physical Review E, 2005, 72(3 Pt 2):036301.
[32] KANNAM S K, TODD B D, HANSEN J S, et al. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations[J]. The Journal of Chemical Physics, 2012, 136(2):024705.
[33] RUCKENSTEIN E R P. On the no-slip boundary condition of hydrodynamics[J]. Journal of Colloid and Interface Science, 1983, 96(2):488-491.
[34] FALK K, SEDLMEIER F, JOLY L, et al. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction[J]. Nano Letters, 2010, 10(10):4067-4073.
[35] MAJUMDER M, CHOPRA N, ANDREWS R,et al.Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(764):44.
[36] WANG Sen, JAVADPOUR F, FENG Qihong. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
[37] ZHANG Tao, LI Xiangfang, SUN Zheng, et al. An analytical model for relative permeability in water-wet nanoporous media[J]. Chemical Engineering Science, 2017, 174: 1-12.
[38] ZHANG Tao, JAVADPOUR F, LI Xiangfang,et al.Mesoscopic method to study water flow in nanochannels with different wettability[J].Physical Review E, 2020, 102(1):013306.
[39] ZAKIROV T, GALEEV A. Absolute permeability calculations in micro-computed tomography models of sandstones by Navier-Stokes and lattice Boltzmann equations[J]. International Journal of Heat and Mass Transfer, 2019, 129: 415-426.
[40] RABBANI A, MOSTAGHIMI P, ARMSTRONG R T. Pore network extraction using geometrical domain decomposition[J]. Advances in Water Resources, 2019, 123: 70-83.
[41] WANG Wendong, WANG Han, SU Yuliang, et al. Simulation of liquid flow transport in nanoscale porous media using lattice Boltzmann method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021,121:128-138.
[42] ZHANG We, FENG Qihong, WANG Sen, et al. Oil diffusion in shale nanopores: insight of molecular dynamics simulation[J]. Journal of Molecular Liquids, 2019, 290: 111183.
[43] ZHAN Shiyuan, SU Yuliang, JIN Zhehui, et al. Effect of water film on oil flow in quartz nanopores from molecular perspectives[J]. Fuel, 2020, 262: 116560.
[44] WANG Hui, WANG Xiaoqi, JIN Xu, et al. Molecular dynamics simulation of diffusion of shale oils in montmorillonite[J]. The Journal of Physical Chemistry, 2016, 120(16): 8986-8991.
[45] ZHAN Shiyuan, SU Yuliang, LU Mingjing, et al. Effect of surface type on the flow characteristics in shale nanopores[J]. Geofluids, 2021(2):1-12.
[46] JIN Zhehui, FIROOZABADI A.Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations[J]. The Journal of Chemical Physics,2015, 143(10):104315.
[47] JIN Zhehui. Effect of nano-confinement on high pressure methane flow characteristics[J]. Jounral of Natural Gas Science and Engineering, 2017, 45: 575-583.
[48] NAN Yiling, LI Wenhui, JIN Zhehui. Slip length of methane flow under shale reservoir conditions: effect of pore size and pressure[J]. Fuel, 2020, 259: 116237.
[49] FALK K, SEDLMEIER F, JOLY L, et al. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(40):14261-14272.
[50] CASTEZ M F, WINOGRAD E A, SNCHEZ V. Methane flow through organic-rich nanopores: the key role of atomic-scale roughness[J]. The Journal of Physical Chemistry C, 2017, 121(51): 28527-28536.
[51] SONG Wenhui, YAO Bowei, YAO Jun, et al. Methane surface diffusion capacity in carbon-based capillary with application to organic-rich shale gas reservoir[J]. Chemical Engineering Journal, 2018, 352, 644-654.
[52] JOSEPH S, ALURU N R. Why are carbon nanotubes fast transporters of water?[J]. Nano Letters, 2008, 8(2):452-458.
[53] YU Hao, XU Hengyu, FAN Jingchun, et al. Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations[J]. Energy Fuels, 2020,35(2), 911-943.
[54] KELEMEN S, AFEWORKI M, GORBATY M, et al. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods[J]. Energy Fuels, 2007, 21(3): 1548-1561.
[55] UNGERER P, COLLELL J, YIANNOURAKOU M J E, et al. Molecular modeling of the volumetric and thermodynamic properties of kerogen: influence of organic type and maturity[J]. Energy Fuels, 2015, 29(1): 91-105.
[56] BOUSIGE C, GHIMBEU C M, VIX-GUTERL C,et al.Realistic molecular model of kerogen’s nanostructure[J]. Nature Materials, 2016, 15(5):576-582.
[57] FALK K, COASNE B, PELLENQ R, et al. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media[J]. Nature Communications, 2015, 6(1):6949.
[58] HO T A, WANG Yifeng.Enhancement of oil flow in shale nanopores by manipulating friction and viscosity[J].Physical Chemistry Chemical Physics,2019, 21(24):12777-12786.
[59] LIU Jie, ZHAO Yi, YANG Yongfei, et al. Multicomponent shale oil flow in real kerogen structures via molecular dynamic simulation[J].Energies, 2020, 13(15): 3815.
[60] OBLIGER A, PELLENQ R, ULM F J, et al.Free volume theory of hydrocarbon mixture transport in nanoporous materials[J]. The Journal of Physical Chemistry Letters, 2016, 7(19):3712-3717.
[61] OBLIGER A, ULM F J, PELLENQ R.Impact of nano-porosity on hydrocarbon transport in shales’ organic matter[J]. Nano Letters, 2018, 18(2):832-837.
[62] LIU Haihu, JU Yaping, WANG Ningning, et al.Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference[J]. Physical Review E, 2015, 92(3):033306.
[63] ZACHARIAH G T, PANDA D, SURASANI V K. Lattice Boltzmann simulations for invasion patterns during drying of capillary porous media[J]. Chemical Engineering Science, 2019, 196: 310-323.
[64] ZHAO Jianlin, KANG Qinjun, YAO Jun, et al. Lattice Boltzmann simulation of liquid flow in nanoporous media[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1131-1143.
[65] ZHAO Wen, JIA Chengzao, ZHANG Tao, et al. Effects of nanopore geometry on confined water flow: a view of lattice Boltzmann simulation[J]. Chemical Engineering Science, 2021, 230: 116183.
[66] CHENG Zhilin, NING Zhengfu, KANG D-H. Lattice Boltzmann simulation of water flow through rough nanopores[J]. Chemical Engineering Science, 2021, 236: 116329.
[67] YANG Yongfei, WANG Ke, ZHANG Lei, et al. Pore-scale simulation of shale oil flow based on pore network model[J]. Fuel, 2019, 251: 683-692.
[68] MIAO Xiuxiu, GERKE K M, SIZONENKO T O. A new way to parameterize hydraulic conductances of pore elements: a step towards creating pore-networks without pore shape simplifications[J]. Advances in Water Resources, 2017, 105: 162-172.
[69] ZHAO Jianlin, QIN Feifei, DEROME D, et al. Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method[J]. Advances in Water Resources, 2020, 145: 103738.
[70] WANG Han, SU Yuliang, WANG Wendong. Investigations on water imbibing into oil-saturated nanoporous media: coupling molecular interactions, the dynamic contact angle, and the entrance effect[J]. Industrial and Engineering Chemistry Research, 2021:60(4):1872-1883.
[71] WANG Xiangzeng, PENG Xiaolong, ZHANG Shoujiang, et al. Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir[J]. Fuel, 2018, 224: 280-288.
[72] ZHAN Shiyuan, SU Yuliang, JIN Zhehui, et al. Study of liquid-liquid two-phase flow in hydrophilic nanochannels by molecular simulations and theoretical modeling[J]. Chemical Engineering Journal, 2020,395: 125053.
[73] ZHANG Tao, JAVADPOUR F, LI Jing, et al.Pore-scale perspective of gas/water two-phase flow in shale[J]. SPE Journal, 2021, 26(2):828-846.

相似文献/References:

[1]陈民锋,赵晶,赵梦盼,等.低渗透稠油油藏储量有效动用界限研究[J].深圳大学学报理工版,2013,30(No.2(111-220)):210.[doi:10.3724/SP.J.1249.2013.02210]
 Chen Minfeng,Zhao Jing,Zhao Mengpan,et al.Study on limits of effective drive in low-permeability heavy-oil reservoirs[J].Journal of Shenzhen University Science and Engineering,2013,30(6):210.[doi:10.3724/SP.J.1249.2013.02210]
[2]陈民锋,李晓风,王敏,等.深水油田高饱和油藏能量合理补充时机研究[J].深圳大学学报理工版,2013,30(No.6(551-660)):649.[doi:10.3724/SP.J.1249.2013.06649]
 Chen Minfeng,Li Xiaofeng,Wang Min,et al.Reasonable opportune moment of energy supplement of high saturation reservoirs in deepwater oilfield[J].Journal of Shenzhen University Science and Engineering,2013,30(6):649.[doi:10.3724/SP.J.1249.2013.06649]
[3]廉培庆,陈志海,董广为,等.水平井与非均质盒式油藏耦合模型[J].深圳大学学报理工版,2015,32(3):266.[doi:10.3724/SP.J.1249.2015.03266]
 Lian Peiqing,Chen Zhihai,Dong Guangwei,et al.A coupling model for horizontal well in heterogeneous box-shaped reservoir[J].Journal of Shenzhen University Science and Engineering,2015,32(6):266.[doi:10.3724/SP.J.1249.2015.03266]
[4]杨智,邹才能,吴松涛,等.含油气致密储层纳米级孔喉特征及意义[J].深圳大学学报理工版,2015,32(3):257.[doi:10.3724/SP.J.1249.2015.03257]
 Yang Zhi,Zou Caineng,Wu Songtao,et al.Characteristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J].Journal of Shenzhen University Science and Engineering,2015,32(6):257.[doi:10.3724/SP.J.1249.2015.03257]
[5]李帅,丁云宏,刘广峰,等.致密储层体积改造润湿反转提高采收率的研究[J].深圳大学学报理工版,2017,34(1):98.[doi:10.3724/SP.J.1249.2017.01098]
 Li Shuai,Ding Yunhong,Liu Guangfeng,et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J].Journal of Shenzhen University Science and Engineering,2017,34(6):98.[doi:10.3724/SP.J.1249.2017.01098]
[6]陈民锋,王兆琪,张琪琛,等.启动压力影响下注采井间有效驱替规律[J].深圳大学学报理工版,2017,34(1):91.[doi:10.3724/SP.J.1249.2017.01091]
 Chen Minfeng,Wang Zhaoqi,Zhang Qichen,et al.Effective displacement rules for interwell with threshold pressure[J].Journal of Shenzhen University Science and Engineering,2017,34(6):91.[doi:10.3724/SP.J.1249.2017.01091]
[7]杨智,邹才能,付金华,等.基于原位转化/改质技术的陆相页岩选区评价——以鄂尔多斯盆地三叠系延长组7段页岩为例[J].深圳大学学报理工版,2017,34(3):221.[doi:10.3724/SP.J.1249.2017.03221]
 Yang Zhi,Zou Caineng,Fu Jinhua,et al.Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: a case study of Yanchang-7 member in Ordos Basin[J].Journal of Shenzhen University Science and Engineering,2017,34(6):221.[doi:10.3724/SP.J.1249.2017.03221]
[8]张贤松,谢晓庆,康晓东,等.非均质油藏聚合物驱注入参数优化方法改进与应用[J].深圳大学学报理工版,2018,35(4):362.[doi:10.3724/SP.J.1249.2018.04362]
 ZHANG Xiansong,XIE Xiaoqing,KANG Xiaodong,et al.An improved optimization method and application for injection parameter of polymer flooding for heterogeneous reservoir[J].Journal of Shenzhen University Science and Engineering,2018,35(6):362.[doi:10.3724/SP.J.1249.2018.04362]
[9]张继成,范佳乐,匡力,等.一种预测特高含水期开发指标的联解法[J].深圳大学学报理工版,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
 ZHANG Jicheng,FAN Jiale,KUANG Li,et al.An integrated method for predicting the development index of extra-high water cut period[J].Journal of Shenzhen University Science and Engineering,2018,35(6):558.[doi:10.3724/SP.J.1249.2018.06574]
[10]苏泽中,林加恩,柏明星,等.天然能量开发阶段的缝洞型油藏井间连通性分析[J].深圳大学学报理工版,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
 SU Zezhong,LIN Jiaen,BAI Mingxing,et al.Inter-well connectivity analysis in carbonate fracture-vuggy reservoir in natural energy development stage[J].Journal of Shenzhen University Science and Engineering,2020,37(6):645.[doi:10.3724/SP.J.1249.2020.06645]
[11]何小东,张景臣,王俊超,等.考虑天然裂缝条件下水平井压裂簇间距优化——以吉木萨尔页岩油为例[J].深圳大学学报理工版,2022,39(2):134.[doi:10.3724/SP.J.1249.2022.02134]
 HE Xiaodong,ZHANG Jingchen,WANG Junchao,et al.Optimization of fracturing cluster spacing of horizontal wells with natural fractures: taking Jimusar shale oil as an example[J].Journal of Shenzhen University Science and Engineering,2022,39(6):134.[doi:10.3724/SP.J.1249.2022.02134]
[12]梁成钢,李菊花,陈依伟,等.基于朴素贝叶斯算法评估页岩油藏产能[J].深圳大学学报理工版,2023,40(1):66.[doi:10.3724/SP.J.1249.2023.01066]
 LIANG Chenggang,LI Juhua,CHEN Yiwei,et al.Productivity evaluation based on naive Bayesian algorithm in shale reservoir[J].Journal of Shenzhen University Science and Engineering,2023,40(6):66.[doi:10.3724/SP.J.1249.2023.01066]

备注/Memo

备注/Memo:
Received:2021-07-23;Accepted:2021-09-14;Online(CNKI):2021-10-09
Foundation:National Natural Science Foundation of China (51804328, 51974348)
Corresponding author:Professor SU Yuliang. E-mail: suyuliang@upc.edu.cn
Citation:SU Yuliang, WANG Han, ZHAN Shiyuan, et al. Research progress on characterization and simulation of shale oil flow in microscale[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(6): 579-589.(in Chinese)
基金项目:国家自然科学基金资助项目(51804328, 51974348)
作者简介:苏玉亮(1970—),中国石油大学(华东)教授、博士生导师. 研究方向:非常规油气渗流与开发.E-mail:suyuliang@upc.edu.cn
引文:苏玉亮,王瀚,詹世远,等. 页岩油微尺度流动表征及模拟研究进展[J]. 深圳大学学报理工版,2021,38(6):579-589.
更新日期/Last Update: 2021-11-30