[1]赵其祥,马梦诗,郑树泉.石墨烯超表面等离子体诱导透明的研究[J].深圳大学学报理工版,2021,38(5):536-542.[doi:10.3724/SP.J.1249.2021.05536]
 ZHAO Qixiang,MA Mengshi,and ZHENG Shuquan.Plasma induced transparency based on graphene super-surface[J].Journal of Shenzhen University Science and Engineering,2021,38(5):536-542.[doi:10.3724/SP.J.1249.2021.05536]
点击复制

石墨烯超表面等离子体诱导透明的研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第5期
页码:
536-542
栏目:
电子与信息科学
出版日期:
2021-09-15

文章信息/Info

Title:
Plasma induced transparency based on graphene super-surface
文章编号:
202105013
作者:
赵其祥马梦诗郑树泉
桂林电子科技大学信息与通信学院,广西桂林 541004
Author(s):
ZHAO Qixiang MA Mengshi and ZHENG Shuquan
School of Information and Communication, Guilin University of Electronic Science and Technology, Guilin 541004, Guangxi Zhuang Autonnous Region, P.R.China
关键词:
电磁场与电磁波技术石墨烯超材料双极化等离子体诱导透明明暗模式谐振
Keywords:
electromagnetic field and wave technology graphene metamaterial double polarization plasmon induced transparency bright and dark mode resonance
分类号:
O441.3
DOI:
10.3724/SP.J.1249.2021.05536
文献标志码:
A
摘要:
设计一种基于石墨烯的等离子体诱导透明超表面模型,该结构由上下两个不同尺寸的十字形石墨烯层夹一层聚酰亚胺隔离层组成.在不改变结构尺寸的前提下,通过改变上下十字形石墨烯层几何中心位置间的距离,控制上层和下层石墨烯间的耦合,从而形成等离子体诱导透明效应.该结构利用上层和下层石墨烯可分别作为明暗模式,在几何中心的移动过程中激励出不同的谐振模式,当入射波电场沿着TM方向极化时,上层和下层石墨烯之间通过明暗模式的干涉相消实现透明窗口由大变小再到关闭的功能. 当入射波电场沿着TE方向极化时,下层石墨烯由于被激励产生弱多极子谐振反过来抑制上层石墨烯,从而实现等离子体诱导透明窗口由无到有再到双透明的变化.该研究在两个垂直极化方向上同时实现不同功能,为极化不敏感的等离子体诱导透明效应研究以及多功能等离子体诱导透明机理提供理论依据.
Abstract:
A plasma-induced transparent super-surface model based on graphene is designed. The structure consists of two cross-shaped graphene layers with different sizes and one polyimide isolation layer between them. In order to form the plasma-induced transparency effect without changing the structure size, the coupling between the upper graphene layer and the lower graphene layer is controlled by changing the distance between the geometric centers of the upper and lower cross-shaped graphene layers. The advantage of designed structure is that the upper and lower graphene layers can be used as the bright and dark modes, respectively, and different resonant modes are excited during the movement of the geometric centers. When the electric field of the incident wave is polarized along TM direction, the transparent window between the upper and lower layers can be changed from large to small and then closed through the interference cancellation of light and dark modes. When the electric field of the incident wave is polarized along TE direction, the lower graphene is excited to generate the weak multipole resonance, which in turn suppresses the upper graphene, so as to realize the plasma-induced transparent window developed from nothing to double transparent windows. This paper lays a theoretical foundation for study of polarization insensitive plasma induced transparency and the mechanism of multifunctional plasma-induced transparency.

参考文献/References:

[1] 陈徐.基于电磁超材料的太赫兹功能器件机理与特性研究[D].西安:中国科学院大学,2018.
CHEN Xu. Research on mechanism and characteristics of terahertz functional devices based on electromagnetic metamaterials[D]. Xi’an: University of Chinese Academy of Sciences, 2018.(in Chinese)
[2] 唐培人.基于新型半导体的太赫兹波调制技术及其传感应用[D].合肥:中国科学技术大学,2019.
TANG Peiren. Terahertz wave modulation technology based on novel semiconductor and its sensing application[D]. Hefei: University of Science and Technology of China, 2019.(in Chinese)
[3] 姚刚.基于石墨烯等离子体诱导透明的太赫兹超材料动态调制特性研究[D].上海:上海交通大学,2017.
YAO Gang. Research on dynamic modulation characteristics of terahertz metamaterials based on graphene plasma induced transparency[D]. Shanghai: Shanghai Jiaotong University, 2017.(in Chinese)
[4] LIU Na, WEISS T, MESCH M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.
[5] LIU Tingting, WANG Hyauxubg, LIU Yong, et al. Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal-graphene metamaterial[J]. Journal of Physics D: Applied Physics, 2018, 51: 415105.
[6] ZHANG Yudong, LI Jin, LI Hangyang, et al. Plasmon-induced-transparency in subwavelength structures[J]. Optics and Laser Technology, 2013, 49: 202-208.
[7] ZHAO Qixiang, YU Sheng. The nonlinear designs and experiments on a 0.42 THz second harmonic gyrotron with complex cavity[J]. IEEE Transactions on Electron Devices, 2017, 64(2): 564-570.
[8] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.
[9] LIU Xiaojun, GU Jianqiang, SINGH R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 2012, 100(13): 131101.
[10] KIM T, KIM H D, ZHAO S, et al. Electrically tunable slow light using graphene metamaterials[J]. ACS Photonics: Acsphotonics, 2018, 5(5): 1800-1807.
[11] HU Yuze, YOU Jie, TONG Mingyu, et al. Metaphotonic devices: pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices[J]. Advanced Science, 2020, 7(14): 2070080.
[12] ZHANG S, GENOV D A, WANG Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 218-221.
[13] JIN Xingrui, PARK J, ZHENG Haiyu, et al. Dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling[J]. Optics Express, 2011, 19(22): 21652-21657.
[14] BAGCI F, AKAOGLU B. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product[J]. Journal of Applied Physics, 2018, 123(17): 173101.
[15] QU Zeng, XU Yongqing, ZHANG Binzhen,et al. Terahertz dual-band polarization insensitive electromagnetically induced transparency-like metamaterials[J]. Plasmonics, 2019,15(20):301-308.
[16] XIAO Binggang, TONG Shengjun, FYFFE A, et al. Tunable electromagnetically induced transparency based on graphene metamaterials[J]. Optics Express, 2020, 28(3): 4048-4057.
[17] CHEN J, LI X, SHI X, et al. Active control of light slowing enabled by coupling electromagnetic metamaterials with low-lossy grapheme[J]. Optics Letters, 2018, 43(20): 4891-4894.
[18] LAO Chaode, LIANG Yaoyao, WANG Xianjun, et al. Dynamically tunable resonant strength in electromagnetically induced transparency (EIT) analogue by hybrid metal-graphene metamaterials[J]. Nanomaterials, 2019, 9(2): 171.
[19] ZHENG Shuquan, ZHAO Qixiang, PENG Ling, et al. Tunable plasmon induced transparency with high transmittance in a two-layer graphene structure[J]. Results in Physics, 2021, 23: 104040.
[20] HANSON G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2018, 103(6): 064302.
[21] 廖昌龙.基于石墨烯表面等离激元的电磁干涉效应研究[D].长沙:湖南大学,2018.
LIAO Canglong. Research on electromagnetic interference effect based on surface plasmon of graphene[D]. Changsha: Hunan University, 2018.(in Chinese)
[22] ARTAR A, YANIK A, ALTUG H. Multispectral plasmon induced transparency in coupled meta-atoms[J]. Nano Letters, 2011, 11(4): 1685-1689.
[23] JIA Wei, REN Peiwen, TIAN Yuchen, et al. Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials[J]. Chinese Physics B, 2019, 28(2): 026102.

备注/Memo

备注/Memo:
Received:2021-02-01;Accepted:2021-05-28;Online(CNKI):2021-08-10
Foundation:National Natural Science Foundation of China (62001131);
Guangxi Natural Science Foundation of Guangxi Province (2019GXNSFBA245066); Guangxi
Science and Technology Base and Talent Special Project (AD19245042); The Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing Grant (GXKL06190102)
Corresponding author:Lecturer ZHAO Qixiang. E-mail: zxqi1105@163.com
Citation:ZHAO Qixiang, MA Mengshi, ZHENG Shuquan. Plasma induced transparency based on graphene super-surface[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(5): 536-542.(in Chinese)
基金项目:国家自然科学基金资助项目(62001131) ;广西省自然科学基金资助项目(2019GXNSFBA245066);广西科技基地和人才专项资助项目(桂科AD19245042);广西无线宽带通信与信号处理重点实验室基金资助项目(GXKL06190102)
作者简介:赵其祥(1987—),桂林电子科技大学讲师、博士.研究方向:天线与电磁测量、太赫兹科学.E-mail:zxqi1105@163.com
引文:赵其祥,马梦诗,郑树泉.石墨烯超表面等离子体诱导透明的研究[J]. 深圳大学学报理工版,2021,38(5):536-542.
更新日期/Last Update: 2021-09-30