[1]健男,尹美杰,张熙,等.高分辨透射电子显微镜的原位实验综述[J].深圳大学学报理工版,2021,38(5):441-452.[doi:10.3724/SP.J.1249.2021.05441]
 JIAN Nan,YIN Meijie,ZHANG Xi,et al.In situ experiments of high resolution transmission electron microscopy: a review[J].Journal of Shenzhen University Science and Engineering,2021,38(5):441-452.[doi:10.3724/SP.J.1249.2021.05441]
点击复制

高分辨透射电子显微镜的原位实验综述()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第5期
页码:
441-452
栏目:
光电工程
出版日期:
2021-09-15

文章信息/Info

Title:
In situ experiments of high resolution transmission electron microscopy: a review
文章编号:
202105001
作者:
健男尹美杰张熙刁东风
深圳大学电镜中心,广东深圳518060
Author(s):
JIAN Nan YIN Meijie ZHANG Xi and DIAO Dongfeng
Electron Microscope Center, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
纳米科学与技术高分辨透射电子显微学原位实验环境透射电镜四维超快电镜原位样品杆
Keywords:
nano-scale science and technology high resolution transmission electron microscopy in situ experiment environmental transmission electron microscope 4D ultrafast electron microscope in situ sample holder
分类号:
O4-1
DOI:
10.3724/SP.J.1249.2021.05441
文献标志码:
A
摘要:
高分辨透射电子显微镜(transmission electron microscopy, TEM)原位实验是在纳米乃至皮米尺度上实时研究物质在不同场环境中的原子和电子结构变化、探寻材料在使役条件下性能根源的一类实验研究方法,在基础科学探索与产业技术研发的源头创新中起着不可或缺的作用.本文详细介绍了高分辨透射电镜原位实验研究的技术原理以及应用进展.按照原位电镜实验实现手段进行分类,概述原位电子束照射、环境透射电镜、四维超快电镜、原位加热、加电、力学、光学、液体、气体样品杆等各类高分辨原位电镜实验的实验技术、原理以及应用的最新进展.随着技术的进步,高分辨原位电镜实验正向着芯片化、复合化和定量化的方向发展,而目前所遇到的电子束、磁场的干扰以及成像速度问题相信在不远的将来会得到解决.
Abstract:
In situ high-resolution transmission electron microscopy (TEM) is an experimental technique for exploring how the properties of a material arise from its atomic and electronic structure, at the nanometer or even picometer scale, under working conditions. It can also be used to study how those structures may evolve under the influence of applied electric and magnetic fields. It is one of the most important research areas in high-resolution TEM research, which is playing an indispensable role in driving innovation in both fundamental research and the development of industrial technology. This review introduces the basic principles, experimental technology, and recent progress in the application of the various kinds of in situ high-resolution TEM. Trends in the future development of in situ high-resolution TEM include a push towards chip-based implementation, multi-stimulus/environment integration, and more precise quantification of results. Efforts are also underway to overcome the challenges posed by electron irradiation damage, disturbance by magnetic fields, and limited imaging speeds.

参考文献/References:

[1] BROGLIE L De. On the theory of the quanta[D]. Paris: University of Paris, 1925.
[2] RUSKA E. Die elektronenmikroskopische abbildung elektronenbestrahlter oberflchen[J]. Zeitschrift Für Physik, 1933, 83: 492-497.
[3] JIANG Yi, CHEN Zhen, HAN Yimo, et al. Electron ptychography of 2D materials to deep sub-ngstrm resolution[J]. Nature, 2018, 559(7714): 343-349.
[4] ZEWAIL A H. Four-dimensional electron microscopy[J]. Science, 2010, 328(5975): 187-194.
[5] GAO Wenpei, ADDIEGO C, WANG Hui et al. Real-space charge-density imaging with sub-ngstrm resolution by four-dimensional electron microscopy[J]. Nature, 2019, 575(7783): 480-484.
[6] WANG Kanpeng, DAHAN R., SHENTCIS M. et al. Coherent interaction between free electrons and a photonic cavity[J]. Nature, 2020, 582(7810): 50-54.
[7] MASSEBOEUF A. In situ characterization methods in transmission electron microscopy[G]// CLAVERIE A, MOUIS M. Transmission electron microscopy in micro-nanoelectronics.[S. l.]: John Wiley & Sons, Inc, 2013: 199-218
[8] PANDRAUD G, MORANA B, WEI Jia, et al. 10 bar nanoreactors for in situ transmission electron microscopy[C]// Proceedings in European Microscopy Congress.[S. l.]: Wiley-VCH Verlag GmbH & Co, 2016, 277-278.
[9] CAI Huafei, JIANG Yonggang, FENG Jian. et al. Nanostructure evolution of silica aerogels under rapid heating from 600 ℃ to 1 300 ℃ via in-situ TEM observation[J]. Ceramics International, 2020, 46(8): 12489-12498.
[10] FAN Zheng, ZHANG Liqiang, BAUMANN D. et al. In situ transmission electron microscopy for energy materials and devices[J]. Advanced Materials, 2019, 31(33): 1900608.
[11] ZHANG Chao, FIRESTEIN K, FERNANDO J, et al. Recent progress of in situ transmission electron microscopy for energy materials[J]. Advanced Materials, 2020, 32(18): 1904094.
[12] TAHERI M L, STACH E A, ARSLAN I, et al. Current status and future directions for in situ transmission electron microscopy[J]. Ultramicroscopy, 2016, 170: 86-95.
[13] WOEHL T. Refocusing in situ electron microscopy: moving beyond visualization of nanoparticle self-assembly to gain practical insights into advanced material fabrication[J]. ACS Nano, 2019, 13(11): 12272-12279.
[14] ZHU Yuanmin, GUI Zhigang, WANG Qi, et al. Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by cryo-TEM[J]. Nano Energy, 2020, 73: 104820.
[15] WARNER J H, LIN Y C, HE Kuang, et al. Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures[J]. ACS Nano, 2014, 8(11): 11806-11815.
[16] ZHANG Liuxian, MILLER B K, CROZIER P A. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor[J]. Nano Letters, 2013, 13(2): 679-684.
[17] CHEN Jun, ZHOU Si, YI Wen, et al. In situ high temperature atomic level dynamics of large inversion domain formations in monolayer MoS2[J]. Nanoscale, 2019, 11(4): 1901-1913.
[18] GAI P L, KOURTAKIS K. Solid-state defect mechanism in vanadyl pyrophosphate catalysts: implications for selective oxidation[J]. Science, 1995, 267(5198): 661-663.
[19] WILLIAMSON M J, TROMP R M, VEREECKEN P M, et al. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface[J]. Nature Materials, 2003, 2(8): 532-536.
[20] LOBASTOV V A, SRINIVASAN R, ZEWAIL A H. Four-dimensional ultrafast electron microscopy[J]// Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(20): 7069-7073.
[21] GAI P L, BOYES E. The 1 double aberration corrected ETEM and ESTEM project at York[J]. Microscopy Microanalysis, 2007, 13(Suppl 2): 548-549.
[22] CREEMER J, HELVEG S, HOVELING G, et al. MEMS nanoreactor for atomic-resolution microscopy of nanomaterials in their working state[C]// Proceedings of the 22nd IEEE International Conference on Micro Electro Mechanical Systems. Sorrento, Italy: IEEE, 2009: 76-79.
[23] MOHANTY N, FAHRENHOLTZ M, NAGARAJA A, et al. Impermeable graphenic encasement of bacteria[J]. Nano Letters, 2011, 11(3): 1270-1275.
[24] BAI Xiaochen, FERNANDEZ I S, MCMULLAN G, et al. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles[J]. Elife, 2013, 2: e00461.

[25] NAKANE T, KOTECHA A, SENTE A, et al. Single-particle cryo-EM at atomic resolution[J]. Nature, 2020, 587(7832): 152-156.
[26] YIP K M, FISCHER N, PAKNIA E, et al. Atomic-resolution protein structure determination by cryo-EM[J]. Nature, 2020, 587(7832): 157-161.
[27] EISENSTEIN M. The field that came in from the cold[J]. Nature Methods, 2016, 13(1): 19-22.
[28] WU Jianbo, SHAN Hao, CHEN Wenlong, et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research[J]. Advanced Materials, 2016, 28(44): 9686-9712.
[29] YUAN Yifei, AMINE K, LU Jun, et al. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy[J]. Nature Communications, 2017, 8: 1-14.

[30] RUSKA E. Beitrag zur übermikroskopischen abbildung bei hheren drucken[J]. Kolloid-Zeitschrift, 1942, 100: 212-219.
[31] MARTON L. La microscopie electronique des objets biologiques[J]. Bulletin et Mémories de L Académie Royale de Médecine de Belgique, 1935, 21: 553.
[32] WILLIAMS D B, CARTER C B. Transmission electron microscopy: a textbook for materials science[M]. Boston, USA: Springer, 2008.
[33] CAO Kecheng, SKOWRON S, BISKUPEK J, et al. Imaging an unsupported metal-metal bond in dirhenium molecules at the atomic scale[J]. Science Advances, 2020, 6(3): eaay5849.
[34] LIN Junhao, CRETU O, ZHOU Wu, et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers[J]. Nature Nanotechnology, 2014, 9(6): 436-442.
[35] YOSHIDA H, KUWAUCHI Y, JINSCHEK J, et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions[J]. Science, 2012, 335(6066): 317-319.
[36] LUO Langli, ENGELHARD M, SHAO Yuyan, et al. Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM[J]. ACS Catalysis, 2017, 7: 7658-7664.
[37] ZEWAIL A H. Four-dimensional electron microscopy[J]. Science, 2010, 328(5975): 187-193.
[38] VANACORE G M, FITZPATRICKA W P, ZEWAIL A H. Four-dimensional electron microscopy: ultrafast imaging, diffraction and spectroscopy in materials science and biology[J]. Nano Today, 2016, 11(2): 228-249.
[39] BARWICK B, PARK H S, KWON O H, et al. 4D Imaging of transient structures and morphologies in ultrafast electron microscopy[J]. Science, 2008, 322(5905): 1227-1231.
[40] BERRUTO G, MADAN I, MUROOKA Y, et al. Laser-induced skyrmion writing and erasing in an ultrafast cryo-lorentz transmission electron microscope[J]. Physical Review Letters, 2018, 120(11): 117201.
[41] LI Fan, ZONG Yuan, MA Yanling, et al. Atomistic imaging of competition between surface diffusion and phase transition during the intermetallic formation of faceted particles[J]. ACS Nano, 2021, 15: 5284-5293.
[42] JIAN Nan, XUE Peidong, DIAO Dongfeng. Thermally induced atomic and electronic structure evolution in nanostructured carbon film by in situ TEM/EELS analysis[J]. Applied Surface Science, 2019, 498: 143831.
[43] HUANG Jianyu, ZHONG Li, WANG Chongmin, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010): 1515-1520.
[44] WANG Ziying, SANTHANAGOPALAN D, ZHANG Wei, et al. In situ STEM/EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767.
[45] GONG Yue, CHEN Yuyang, ZHANG Qinghua, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9(1): 3341.
[46] CHEN Pan, ZHONG Xiangli, ZORN J, et al. Atomic imaging of mechanically induced topological transition of ferroelectric vortices[J]. Nature Communications, 2018, 11(1): 1840.
[47] OVIEDO J P, KC S, LU Ning, et al. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide[J]. ACS Nano, 2015, 9(2): 1543-1551.
[48] DUAN Manyi, YU Jian, MENG Jun, et al. Reconstruction of supported metal nanoparticles in reaction conditions[J]. Angewandte Chemie, 2018, 57(22): 6464-6469.
[49] LANG Rui, XI Wei, LIU Jincheng, et al. Non defect-stabilized thermally stable single-atom catalyst[J]. Nature Communications, 2019, 10(1): 1-10.
[50] YUK J M, PARK J W, ERCIUS P, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells[J]. Science, 2012, 336(6077): 61-64.
[51] ZHU Chao, LIANG Suxia, SONG Erhong, et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles[J]. Nature Communications, 2018, 9(1): 421.
[52] XIANG Bin, HWANG D J, IN J B, et al. In situ TEM near-field optical probing of nanoscale silicon crystallization[J]. Nano Letters, 2012, 12(5): 2524-2529.
[53] DONG Hui, XU Tao, SUN Ziqi, et al. Simultaneous atomic-level visualization and high precision photocurrent measurements on photoelectric devices by in situ TEM[J]. RSC Advances, 2018, 8(2): 948-953.
[54] ZHANG Chao, CRETU O, KVASHNIN D G. et al. Statistically analyzed photoresponse of elastically bent cds nanowires probed by light-compatible in situ high-resolution TEM[J]. Nano Letters, 2016, 16: 6008-6013.
[55] SHIBATA N, KOHNO Y, NAKAMURA A, et al. Atomic resolution electron microscopy in a magnetic field free environment[J]. Nature Communication, 2019, 10(1): 1-5.
[56] FU Xuewen, WANG Erdong, ZHAO Yubin, et al. Direct visualization of electromagnetic wave dynamics by laser-free ultrafast electron microscopy[J]. Science Advances, 2020, 6(40): eabc3456.

备注/Memo

备注/Memo:
Received:2021-04-12;Accepted:2021-06-12;Online(CNKI):2021-09-09
Foundation:National Natural Science Foundation of China (51975383; 11904235)
Corresponding author:Professor DIAO Dongfeng. E-mail: dfdiao@szu.edu.cn
Citation:JIAN Nan, YIN Meijie, ZHANG Xi, et al. In situ experiments of high resolution transmission electron microscopy: a review[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(5): 441-452.(in Chinese)
基金项目:国家自然科学基金资助项目(51975383;11904235)
作者简介:健男(1987—),深圳大学电镜中心实验师、博士.研究方向:球差校正透射电子显微和透射电镜原位研究.E-mail:bai-jiannan@szu.edu.cn
引文:健男,尹美杰,张熙,等.高分辨透射电子显微镜的原位实验综述[J]. 深圳大学学报理工版,2021,38(5):441-452.
更新日期/Last Update: 2021-09-30