GONG Lulu,LUO Guoqi,YAO Jun,et al.Preparation and electrochemical properties of silicon copper alloy for high performance anode[J].Journal of Shenzhen University Science and Engineering,2021,38(3):272-279.[doi:10.3724/SP.J.1249.2021.03272]





Preparation and electrochemical properties of silicon copper alloy for high performance anode
GONG Lulu1 LUO Guoqi2 YAO Jun1 YIN Xiaolong3 CHEN Huanhui3 and REN Xiangzhong3
1) Hubei Institute of Aerospace Chemical Technology, Xiangyang 441003, Hubei Province, P.R.China
2) Xiangyang Sunvalor Aerospace Films Co. Ltd., Xiangyang 441003, Hubei Province, P.R.China
3) College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
composite material lithium-ion batteries Si-Cu materials N-doped carbon materials anode materials electrochemical performance
为提高锂离子电池硅基负极材料的电化学性能,采用化学还原及机械球磨法制备硅-铜(Si-Cu)不相容合金负极材料,并以苯胺为单体对Si-Cu材料进行原位聚合,经高温煅烧得到氮掺杂碳包覆的Si-Cu合金(Si-Cu/N-C)复合负极材料. 利用X-射线衍射、 扫描电子显微镜和透射电子显微镜(transmission electron microscopy, TEM)对材料的结构形貌进行表征,通过恒流充放电、循环伏安和电化学交流阻抗等分析测试技术,研究了材料的电化学性能. 研究结果表明,当Si∶Cu质量比为 1.5∶1,球磨时间为7 h时,首次放电比容量高达1 018.6 mAh/g,100次充放电循环后放电比容量为499.2 mAh/g,显示出最佳的电化学性能和稳定性. 经过包覆改性后,TEM显示该复合负极材料具有核-壳结构. 当加入的苯胺单体为0.45 mL时,复合负极材料的首次放电比容量为1 147.7 mAh/g,100次充放电循环后,放电比容量为857.9 mAh/g,与改性前的Si-Cu负极材料相比,容量保持率提高了10.8%. 改性后电化学性能的提升归因于复合负极材料独特的核-壳结构,聚苯胺高温碳化后得到的N掺杂碳包覆层不仅提高了复合负极材料的导电性,而且减少了材料间的接触阻抗. 此外,氮元素掺杂碳的Si-Cu/N-C 复合负极材料表面活性点增加,使得嵌脱锂电位平台降低,同时在循环过程中有利于形成稳定的固体电解质膜.
To improve the electrochemical performance of silicon-based anode materials, herein, silicon-copper (Si-Cu) incompatible alloy anode material were prepared via facile chemical reduction and ball milling methods. Subsequently, nitrogen-doped carbon-coated Si-Cu alloy (Si-Cu/N-C) composites were prepared via in-situ polymerization with aniline in the high-temperature calcinations process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were performed to analyze the physical characterization of these materials. Besides, the electrochemical performance of the catalysis was studied by constant current charging and discharging, cyclic voltammetry and electrochemical AC impedance spectroscopy (EIS). Electrochemical tests demonstrate that Si-Cu anode performs a high electrocatalytic activity when the ratio of Si to Cu is 1.5∶1 and the ball milling time is 7 h. The anode exhibits an initial discharge capacity of 1 018.6 mAh/g and a capacity of 499.2 mAh/g after 100 cycles. After the coating modification, TEM result shows that this composite anode material possesses a core-shell structure. When the coating mass of N-doped carbon is 0.45, the Si-Cu/N-C electrode exhibits an initial discharge capacity of 1 147.7 mAh/g and maintains a specific capacity of 857.9 mAh/g after 100 cycles. Furthermore, the capacity retention rate of Si-Cu/N-C anode increases by 10.8% as compared with that of Si-Cu. The improved electrochemical performance after modification is attributed to the unique core-shell structure of Si-Cu/N-C. On the one hand, the N-doped carbon coating layer not only improves the conductivity, but also reduces the contact resistance between the electrolyte and electrode. On the other hand, the nitrogen doping of Si-Cu/N-C composite can increase the active site of lithium storage on the surface, reduce lithium storage potential and form a stable solid electrolyte interface (SEI) film during the cycling process.


[1] CHEN Huanhui, HE Jiao, LI Yongliang, et al. Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7: 7691-700.
[2] HUANG Moujie, CHEN Huanhui, HE Jiao, et al. Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity[J]. Electrochimica Acta, 2019, 317: 638-647.
[3] WAAG W, FLEISCHER C, SAUERDirk U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258: 321-329.
[4] WU Hui, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nat Nanotechnol, 2012, 7: 310-315.
[5] LIAO Chenbo, XU Qingkai, WU Chaolu, et al. Core-shell nano-structured carbon composites based on tannic acid for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4: 17215-17224.
[6] 尹小龙. Si/Cu/N-C复合负极材料的制备及电化学性能研究[D]. 深圳:深圳大学,2015.
YIN Xiaolong. Preparation and electrochemical properties of Si/Cu/N-C composite anode materials[D]. Shenzhen:Shenzhen University,2015.(in Chinese)
[7] YANG Yang, LI Jiaqi, CHEN Dingqiong, et al. Binder-free carbon-coated silicon-reduced graphene oxide nanocomposite electrode prepared by electrophoretic deposition as a high-performance anode for lithium-ion batteries[J]. ChemElectroChem, 2016, 3: 757-763.
[8] MESCERIAKOVAS A, MURASHKO K, ALATALO S M, et al. Influence of induction-annealing temperature on the morphology of barley-straw-derived Si@C and SiC@graphite for potential application in Li-ion batteries[J]. Nanotechnology, 2020, 31: 335709.
[9] LI Xifei, GENG Dongsheng, ZHANG Yong, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2011, 13: 822-825.
[10] YANG Ze, SHEN Xiangyan, WANG Ning, et al. Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion[J]. ACS Applied Mater Interfaces, 2018, 11: 2608-2617.
[11] SHIN W H, JEONG H M, KIM B G, et al. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity[J]. Nano letters, 2012, 12: 2283-2288.
[12] YUE Bing, MA Yanwen, TAO Haisheng, et al. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation[J]. Journal of Materials Chemistry, 2008, 18: 1747-1750.
[13] WU Y P, JIANG C Y, WAN C R, et al. Nitrogen-containing polymeric carbon as anode material for lithium ion secondary battery[J]. Journal of Applied Polymer Science, 2000, 77: 1735-1739.
[14] BULUSHVA L G, OKOTRUB A V, KURENYA A G, et al. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries[J]. Carbon, 2011, 49: 4013-4023.
[15] PALLAVI V, PASCAL M, PETR N. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55: 6332-6341.
[16] MI Hongwei, YANG Xiaodan, LI Yongliang, et al. Self-healing silicon-sodium alginate-polyaniline composites originated from the enhancement hydrogen bonding for lithium-ion battery: A combined simulation and experiment study[J]. Journal of Power Sources, 2019, 412: 749-758.
[17] MI Hongwei, YANG Xiaodan, LI Yongliang, et al. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 351: 103-109.
[18] TOKUR M, ALGUL H, OZCAN S, et al. Closing to Scaling-up high reversible Si/rGO nanocomposite anodes for lithium ion batteries[J]. Electrochimica Acta, 2016, 216: 312-319.
[19] XIAO Lisong, SEHLLEIER Y H, DOBROWOLNY S, et al. Si-CNT/rGO nanoheterostructures as high-performance lithium-ion-battery anodes[J]. ChemElectroChem, 2015, 2: 1983-1990.
[20] LI Bo, LI Shixiong, JIN Ying, et al. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities[J]. Journal of Materials Chemistry A, 2018, 6: 21098-21103.
[21] LI Weiqun, CAO Ke, WANG Hongtao, et al. Carbon coating may expedite the fracture of carbon-coated silicon core-shell nanoparticles during lithiation[J]. Nanoscale, 2016, 8: 5254-5259.
[22] CHEN Huanhui, DENG Libo, LUO Shan, et al. Flexible three-dimensional heterostructured ZnO-Co3O4 on carbon cloth as free-standing anode with outstanding Li/Na storage performance[J]. Journal of The Electrochemical Society, 2018, 165: A3932-A3942.
[23] CHEN Huanhui, HE Jiao, KE Guanxia, et al. MoS2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO2 as an anode for lithium-ion batteries[J]. Nanoscale, 2019, 11: 16253-16261.


[1]倪 卓,刘剑洪,魏波,等.PEEK/AS4复合材料微观结构表征[J].深圳大学学报理工版,2007,24(1):47.
 NI Zhuo,LIU Jian-hong,WEI Bo,et al.Microstructural charaterization of Polyetheretherketon/AS4 composites[J].Journal of Shenzhen University Science and Engineering,2007,24(3):47.
 CAO Hui-qun,ZHOU Xiao-ming,LIU Jian-hong,et al.The preparation and characteration of carbon nanotubes assembled with europium oxide[J].Journal of Shenzhen University Science and Engineering,2007,24(3):54.
 NI Zhuo,ZHANG Ping,LIN Yan-ling,et al.Self-repairing behaviours of unsaturated polyester/microcapsule composites[J].Journal of Shenzhen University Science and Engineering,2010,27(3):260.
 GUI Da-yong,HAO Jing-feng,LAI Yu-li,et al.Modification of epoxy resin with diphenyl silanediol and its thermal stability[J].Journal of Shenzhen University Science and Engineering,2011,28(3):507.
 XU Xin-tong,ZHAI Jian-pang,FU Ling,et al.Synthesis and optical characterization of Se8ring incorporated inside the cages of CHA crystals[J].Journal of Shenzhen University Science and Engineering,2011,28(3):518.
 SONG Yuan-jia,ZHANG Wei,YANG Zheng-wei,et al.Debond defect detection in shell of solid rocket motor by thermal wave nondestructive testing[J].Journal of Shenzhen University Science and Engineering,2012,29(3):252.[doi:10.3724/SP.J.1249.2012.03252]
 NI Zhuo,WANG Ying,HUA Wen-yu,et al.Thermal stability of ?PEEK/HA biological composite materials[J].Journal of Shenzhen University Science and Engineering,2012,29(3):521.[doi:10.3724/SP.J.1249.2012.06521]
 Liu Jianhong,Wu Shuangquan,He Chuanxin,et al.Structure, property and application of carbon nanotubes and carbon microtubes[J].Journal of Shenzhen University Science and Engineering,2013,30(3):1.[doi:10.3724/SP.J.1249.2013.01001]
 Ni Zhuo,Liu Shide,Wang Ying,et al.Influence of 3T3 cells for PEEK-HA composite[J].Journal of Shenzhen University Science and Engineering,2013,30(3):392.[doi:10.3724/SP.J.1249.2013.04392]
 Ni Zhuo,Wang Ying,Wang Shuang,et al.Influence of PEEK-HA composites on MG-63 cells[J].Journal of Shenzhen University Science and Engineering,2014,31(3):258.[doi:10.3724/SP.J.1249.2014.03258]
 Shi Chuan,Li Yongliang,Ren Xiangzhong,et al.Preparation and properties of LiV3O8-MWCNTs as high performance cathode materials for lithium-ion battery[J].Journal of Shenzhen University Science and Engineering,2017,34(3):551.[doi:10.3724/SP.J.1249.2017.06551]


Foundation:Natural Science Foundation of Guangdong Province (2020A1515010379); Shenzhen Basic Research Fourdation (JCYJ20180305125729925)
Corresponding author:Professor REN Xiangzhong.E-mail: renxz@szu.edu.cn
Citation:GONG Lulu,LUO Guoqi,YAO Jun,et al.Preparation and electrochemical properties of silicon copper alloy for high performance anode[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(3): 272-279.(in Chinese)
引文:龚露露,罗国旗,姚俊,等.高性能硅铜合金负极材料的制备及性能研究[J]. 深圳大学学报理工版,2021,38(3):272-279.
更新日期/Last Update: 2021-05-30