[1]欧粤,等.太赫兹行波管非对称降压收集极设计[J].深圳大学学报理工版,2021,38(3):245-251.[doi:10.3724/SP.J.1249.2021.03245]
 OU Yue,LIU Wenxin,et al.Design of an asymmetric multi-stage depressed collector for terahertz traveling wave tubes[J].Journal of Shenzhen University Science and Engineering,2021,38(3):245-251.[doi:10.3724/SP.J.1249.2021.03245]
点击复制

太赫兹行波管非对称降压收集极设计()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第3期
页码:
245-251
栏目:
光电工程
出版日期:
2021-05-14

文章信息/Info

Title:
Design of an asymmetric multi-stage depressed collector for terahertz traveling wave tubes
文章编号:
202103005
作者:
欧粤1 2刘文鑫1 2赵征远1杨龙龙1王韦龙1张兆传1
1)中国科学院空天信息创新研究院高功率微波源与技术重点实验室,北京 100049;
2)中国科学院大学电子电气与通信工程学院,北京 100049
Author(s):
OU Yue1 2 LIU Wenxin1 2 ZHAO Zhengyuan1 YANG Longlong1 WANG Weilong1 and ZHANG Zhaochuan1
1) Key Laboratory of High-Power Microwave Sources and Technologies, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, P.R.China
2) School of Electronic, Electrical and Communication Engineering, University of Chinese Academy Sciences, Beijing 100049, P.R.China
关键词:
电子技术真空电子学行波管电子能量非对称降压收集极回收效率回流率多级降压收集极
Keywords:
electronic technology vacuum electronics travelling wave tubes electron energy asymmetric depressed collector recovery efficiency reflux rate multistage depressed collector
分类号:
TN12
DOI:
10.3724/SP.J.1249.2021.03245
文献标志码:
A
摘要:
多级降压收集极是太赫兹行波管中回收废电子注的重要部件,对整管工作效率有重要影响.为提升整管工作效率,提出一种非轴对称结构的太赫兹频段行波管降压收集极的设计方案.通过研究注波互作用后的废电子注能量特性,设计了轴对称太赫兹频段行波管降压收集极结构,再采用非轴对称结构进行优化.三维粒子模拟计算结果显示,在考虑二次电子发射的情况下,采用三级轴对称降压收集极的太赫兹行波管,最佳回收效率为79.30%,粒子回流率为3.12%,整管工作效率为4.47%;而当采用三级非轴对称结构降压收集极时,太赫兹行波管的回收效率升至89.50%,粒子回流率降至0.53%,整管工作效率为8.38%.采用非对称结构设计的降压收集极可有效提高太赫兹行波管的整管工作效率.
Abstract:
The multi-stage depressed collector (MDC) plays an important role in the terahertz traveling wave tube (TWT) for recovering spent electron beam, which has significant impact on its working total efficiency. For the purpose of improving the efficiency of the whole tube, the designscheme method of a depressed collector with non-axisymmetric structure in terahertz TWT is proposed. The axisymmetric depressed collector for terahertz TWT is designed by analyzing the energy characteristics of spent electron beam after beam-wave interaction, and then on-axisymmetric structure is used for optimization. The results of three-dimensional particle simulation (PIC) show that for the TWT with the three-stage axisymmetric MDC, the optimal recovery efficiency is 79.30%, electron reflux rate is 3.12%, and the working efficiency is 4.47% when considering the secondary electron emission. For the TWT with the three-stage non-axisymmetric MDC, the recovery efficiency increases to 89.50%, the particle reflux rate decreases to 0.53%, and the whole tube working efficiency reaches 8.38%. The working efficiency of the whole tube can be increased effectively by taking the asymmetric structure.

参考文献/References:

[1] HE Jingwen, WANG Sen, ZHANG Yan. Terahertz beam shaping with metasurface[C]// International Conference on Infrared, Millimeter-wave, and Terahertz Technology. Beijing: SPIE, 2016: 1003019.
[2] ZHANG Xicheng, SHKURINOV A, ZHANG Yan. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18.
[3] 洪伟,余超,陈继新,等.毫米波与太赫兹技术[J].中国科学:信息科学, 2016,46(8):1086-1107.
HONG Wei,YU Chao,CHEN Jixin,et al. Millimeter wave and terahertz technology[J]. Scientia in China: Information Sciences, 2016, 46(8): 1086-1107.(in Chinese)
[4] RALEIGH M, LU Quanyong, BANDYOPADHYAY N, et al. Quantum cascade lasers: from tool to product[J]. Optics Express, 2015, 23(7): 8462-8475.
[5] HAFEZ H A, CHAI Xin, IBRAHIM A, et al. Intense terahertz radiation and their applications[J]. Journal of Optics, 2016, 18(9): 093004.
[6] HUNG C L, YANG D C. A 0.2-THz second-harmonic coaxial-waveguide gyrotron traveling-wave-tube amplifier[C]// The 41st International Conference on Infrared, Millimeter, and Terahertz Waves. Copenhagen: IEEE, 2016. doi: 10.1109/IRMMW-THz.2016.7758523.
[7] 宫玉彬,周庆,田瀚文,等.基于电子学的太赫兹辐射源[J].深圳大学学报理工版,2019,36(2):111-127.
GONG Yubin, ZHOU Qing, TIAN Hanwen, et al. Terahertz radiation sources based on electronics[J].Journal of Shenzhen University Science and Engineering,2019,36(2):111-127.(in Chinese)
[8] 祝方芳.太赫兹行波管输出窗和收集极的设计与热分析[D].北京:中国科学院电子学研究所,2019.
ZHU Fangfang. Design and thermal analysis of output window and collector of terahertz TWT[D]. Beijing: Institute of electronics, Chinese Academy of Sciences, 2019.(in Chinese)
[9] 刘宇荣,刘斌,王大明.大功率行波管两级降压收集极的设计[J].强激光与粒子束,2017,29:103002.
LIU Yurong, LIU Bin, WANG Daming. Design of two stage depressed collector for high power TWT[J]. High Power Laser and Particle Beam, 2017, 29: 103002.(in Chinese)
[10] XU Li, XIE Peng, YANG Siyi, et al. Accurate and fast thermal analysis of multistage depressed collectors for traveling-wave tubes using finite-element method[J]. IEEE Transactions on Electron Devices, 2020, 67(2): 690-696.
[11] DING Haibing, TANG Liang, SONG Yihao, et al. Design of a Ka-band CW extended interaction klystron[C]// International Vacuum Electronics Conference. Monterey, USA: IEEE, 2018: 187-188.
[12] 王柳亚,丁海兵.Ka波段分布作用速调管降压收集极设计[J].强激光与粒子束,2020,32:083001.
WANG Liuya, DING Haibing. Design of Ka band distributed action klystron buck collector[J]. High Power Laser and Particle Beam, 2020, 32: 083001.(in Chinese)
[13] GILMOUR A S. Klystron, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Beijing: National Defense Industry Press, 2012.
[14] LATHA A M, GHOSH S K. An asymmetric highly efficient multistage depressed collector for space TWTs[J]. IEEE Transactions on Electron Devices, 2016, 63(5): 2139-2144.
[15] LATHA A M, GHOSH S K. Design and development of a novel, compact, and light-weight multistage depressed collector for space TWTs[J]. IEEE Transactions on Electron Devices, 2016, 63(1): 481-485.
[16] OU Yue, LIU Wenxin, YANG Longlong, et al. Thermal analysis of electron gun for terahertz traveling wave tubes based on L-BFGS algorithm[C]// IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). Hangzhou, China: IEEE, 2020: 1-4.
[17] MADENCI E, GUVEN I. The finite element method and applications in engineering using ANSYS?[M]. Boston, USA: Springer, 2006.

相似文献/References:

[1]黄议本,陈思余,谢旭鹏,等.超低频基准脉冲式信号源研制[J].深圳大学学报理工版,2010,27(4):420.
 HUANG Yi-ben,CHEN Si-yu,XIE Xu-peng,et al.Fabrication of new ultra-low frequency reference pulsed signal generator[J].Journal of Shenzhen University Science and Engineering,2010,27(3):420.
[2]舒国响,曹利红,熊浩,等.0.24 THz带状注行波放大管交错栅慢波结构研究[J].深圳大学学报理工版,2019,36(2):128.[doi:10.3724/SP.J.1249.2019.02128]
 SHU Guoxiang,CAO Lihong,XIONG Hao,et al.A staggered double vane slow wave structure of 0.24 THz sheet beam travelling wave tube[J].Journal of Shenzhen University Science and Engineering,2019,36(3):128.[doi:10.3724/SP.J.1249.2019.02128]
[3]逄爽,曾旸,杨琪,等.太赫兹频段复杂目标雷达散射截面测量与验证[J].深圳大学学报理工版,2019,36(2):170.[doi:10.3724/SP.J.1249.2019.02170]
 PANG Shuang,ZENG Yang,YANG Qi,et al.Measurement and verification of radar cross section of complex targets in terahertz frequency band[J].Journal of Shenzhen University Science and Engineering,2019,36(3):170.[doi:10.3724/SP.J.1249.2019.02170]
[4]黄健.基于电容感测的盐水质量分数测量[J].深圳大学学报理工版,2021,38(1):92.[doi:10.3724/SP.J.1249.2021.01092]
 HUANG Jian.Brine mass fraction measurement based on capacitance sensing[J].Journal of Shenzhen University Science and Engineering,2021,38(3):92.[doi:10.3724/SP.J.1249.2021.01092]

备注/Memo

备注/Memo:
Received:2020-12-24;Accepted:2021-03-01
Foundation:National Key R & D Program of China (2017YFA0701003); National Natural Science Foundation of China (11675181, U1832193)
Corresponding author:Research fellow LIU Wenxin. E-mail: lwenxin@mail.ie.ac.cn
Citation:OU Yue, LIU Wenxin, ZHAO Zhengyuan, et al. Design of an asymmetric multi-stage depressed collector for terahertz traveling wave tubes[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(3): 245-251.(in Chinese)
基金项目:国家重点研发计划资助项目(2017YFA0701003);国家自然科学基金项目(11675181, U1832193)
作者简介:欧粤(1996—),中国科学院大学硕士研究生.研究方向:行波管降压收集极设计.E-mail:ouyue18@mails.ucas.ac.cn
引文:欧粤,刘文鑫,赵征远,等.太赫兹行波管非对称降压收集极设计[J]. 深圳大学学报理工版,2021,38(3):245-251.
更新日期/Last Update: 2021-05-30