[1]温嘉敏,闫成员,孙振华.多编程手段的浮栅晶体管非易失性存储器[J].深圳大学学报理工版,2021,38(3):232-238.[doi:10.3724/SP.J.1249.2021.03232]
 WEN Jiamin,YAN Chengyuan,and SUN Zhenhua.Floating gate transistor non-volatile memory with multi-programming method[J].Journal of Shenzhen University Science and Engineering,2021,38(3):232-238.[doi:10.3724/SP.J.1249.2021.03232]
点击复制

多编程手段的浮栅晶体管非易失性存储器()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第3期
页码:
232-238
栏目:
光电工程
出版日期:
2021-05-14

文章信息/Info

Title:
Floating gate transistor non-volatile memory with multi-programming method
文章编号:
202103003
作者:
温嘉敏闫成员孙振华
深圳大学物理与光电工程学院,广东深圳 518060
Author(s):
WEN Jiamin YAN Chengyuan and SUN Zhenhua
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
纳米材料核壳量子点光电晶体管非易失性存储器光电存储器石墨烯晶体管高介电常数材料
Keywords:
nano-materials core-shell quantum dots optoelectronic transistors nonvolatile memories optoelectronic memories graphene transistors high-k dielectric
分类号:
TN36;O47
DOI:
10.3724/SP.J.1249.2021.03232
文献标志码:
A
摘要:
随着信息时代的发展,新型晶体管基非易失性存储器体现出越来重要的应用价值,获得了广泛的研究关注.本研究将具有Ⅰ型能带结构的硒化锌/硫化锌核壳量子点集成到石墨烯晶体管中,充当晶体管中的电荷捕获层和隧穿中心,制备具有多重编程手段的非易失性存储器.该量子点可以实现电子和空穴的双重存储,通过正负脉冲栅压可以改变该器件的沟道电导状态,实现信息存储.表征实验结果表明,该器件可实现60 V的超大存储窗口,在10 h的测试范围内表现出良好稳定性,在多次擦写过程中表现出良好的耐用性.该器件还可以将光照作为辅助编程手段,使用紫外光对写入的电荷进行擦除,实现较好的电写-光擦功能.研究结果表明,核壳量子点是一种良好的电荷存储介质,在晶体管基非易失性存储器中具有巨大应用潜力,对基于半导体核壳量子点的晶体管基存储器进行光电赋能,有望实现光电编程.
Abstract:
With the development of the information age, novel transistor-based non-volatile memories have demonstrated more and more application potential, and thus attract extensive attention and investigation. In this paper, the zinc selenide/zinc sulfide core-shell quantum dots (ZnSe@ZnS QDs) with type-I energy band structure, which act as charge-trapping and tunneling centers, are integrated into a graphene transistor, rendering a non-volatile memory with multiple programming methods. The quantum dots are able to storage both electrons and holes so that the channel conductance of the graphene transistor can be adjusted by either positive or negative pulse gate voltage for information storage. A battery of characterizations show that the device has a large storage windows of 60 V, a good retention performance in 10 h test range and an excellent endurance performance in the process of multiple writing and erasing. In addition, this device can also use light illumination as an auxiliary programming method, where ultraviolet light is used to erase the written charge, demonstrating a benign electrically writing-optically erasing function. This work shows that the core-shell QDs are good charge storage media and have great application potential in transistor-based non-volatile memories. At the same time, due to the excellent optoelectronic properties of semiconductor QDs, applying QDs in memories can empower the device with optoelectronic programming functionality.

参考文献/References:

[1] ZHOU Li,MAO Jingyu,REN Yi,et al. Recent advances of flexible data storage devices based on organic nanoscaled materials[J]. Small,2018,14(10):1703126.
[2] LING Qidan,LIAW D,ZHU Chunxiang,et al. Polymer electronic memories:materials,devices and mechanisms[J]. Progress in Polymer Science,2008,33(10):917-978.
[3] 刘利芳. 高密度电荷俘获型非挥发存储器研究[D]. 北京:清华大学,2015.
LIU Lifang. Research on high-density charge trapping nonvolatile memories[D]. Beijing: Tsinghua University, 2015.(in Chinese)
[4] MEENA J S,SZE S M,CHAND U,et al. Overview of emerging nonvolatile memory technologies[J]. Nanoscale Research Letters, 2014,9(1):526.
[5] CHEN A. A review of emerging non-volatile memory (NVM) technologies and applications[J]. Solid-State Electronics,2016,125:25-38.
[6] KAHNG D, SZE S M. A floating gate and its application to memory devices[J]. Bell System Technical Journal, 1967,46(6):1288-1295.
[7] HU Daobing,WANG Xiumei,CHEN Huipeng,et al. High performance flexible nonvolatile memory based on vertical organic thin film transistor[J]. Advanced Functional Materials,2017,27(41):1703541.
[8] HWANG S K, BAE I, CHO S M, et al. High performance muli-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation[J]. Advanced Functional Materials, 2013,23(44):5484-5493.
[9] FROHMAN B D. Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure[J]. Applied Physics Letters,1971,18(8):332-334.
[10] LEE J, KIM Y, KWON J, et al. Tunable memory characteristics of nanostructured, nonvolatile charge trap memory devices based on a binary mixture of metal nanoparticles as a charge trapping layer[J]. Advanced Materials,2009,21(2):178-183.
[11] HAN Suting, ZHOU Ye, XU Zongxiang, et al. Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories[J]. Advanced Materials, 2012,24(26):3556-3561.
[12] 韩素婷,付晶晶,周晔.基于功能材料的非易失性存储器[J].深圳大学学报理工版,2019,36(3): 221-229.
HAN Suting, FU Jingjing, ZHOU Ye. Nonvolatile memory based on functional materials[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(3): 221-229.(in Chinese)
[13] HAN Suting, ZHOU Ye, ROY V A L. Towards the development of flexible non-volatile memories[J]. Advanced Materials,2013,25(38):5425-5449.
[14] CHIU M Y,CHEN C C,SHEU J T,et al. An optical programming/electrical erasing memory device:organic thin film transistors incorporating core/shell CdSe@ZnSe quantum dots and poly(3-hexylthiophene)[J]. Organic Electronic,2009,10(5):769-774.
[15] ZHOU Ye,HAN Suting,YAN Yan,et al. Solution processed molecular floating gate for flexible flash memories[J]. Scientific Reports,2013,3(1):3093.
[16] SUN K H,INSUBG B,RICHARD H K,et al. Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation[J]. Advanced Materials,2012,24(44):5910-5914.
[17] CHEN Xiaoli,PAN Jingyi,FU Jingjing,et al. Polyoxometalates-modulated reduced graphene oxide flash memory with ambipolar trapping as bidirectional artificial synapse[J]. Advanced Electronic Materials,2018,4(12):1800444.
[18] KANNAN V,KIM H S,PARK H C. High speed switching in quantum dot Ti-TiOx nonvolatile memory device[J]. Electronic Materials Letters,2016,12(2):323-327.
[19] HU Daobing,ZHANG Guocheng,YANG Huihuang,et al. High-performance nonvolatile organic transistor memory using quantum dots-based floating gate[J]. IEEE Transactions on Electron Devices,2017, 64(9):3816-3821.
[20] CHEN Xiangzhong,CHEN Xin,GUO Xu,et al. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption[J]. Nanoscale,2014,6(22):13945-13951.
[21] FANG Fei,YANG Wei,YANG Wen. Mechanical flexible and electric fatigue resistant behavior of relaxor ferroelectric terpolymer[J]. Journal of Applied Physics, 2009,106(3):34106.
[22] BAO Huimin, SONG Jiaofan, ZHANG Juan,et al. Phase transitions and ferroelectric relaxor behavior in P(VDF-TrFE-CFE) terpolymers[J]. Macromolecules, 2007,40(7):2371.
[23] SUN Z, GARY S, THOMAS P, et al. Reduced carrier recombination in PbS-CuInS2 quantum dot solar cells[J]. Scientific Reports, 2015, 5: 10626.
[24] LING Haifeng, LIN Jinyi, YI Mingdong, et al. Synergistic effects of self-doped nanostructures as charge trapping elements in organic field effect transistor memory[J]. ACS Applied Materials & Interfaces, 2016, 8: 18969-18977.
[25] YI Mingdong, XIE Ming, SHAO Yaqing, et al. Light programmable/erasable organic field-effect transistor ambipolar memory devices based on the pentacene/PVK active layer[J]. Journal of Materials Chemistry C, 2015, 3: 5220-5225.
[26] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5: 574-578.
[27] SUN Zhenhua, CHANG Haixing. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. ACS Nano, 2014, 8(5): 4133-4156.

相似文献/References:

[1]周晓明,辛红,游志军,等.CePO4纳米结构合成[J].深圳大学学报理工版,2010,27(2):211.
 ZHOU Xiao-ming,XIN Hong,YOU Zhi-jun,et al.Synthesis of nano-structured CePO4 films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):211.
[2]李正操,余晓毅,苗伟,等.氧化钇掺杂铁薄膜的制备及热稳定行为[J].深圳大学学报理工版,2010,27(3):273.
 LI Zheng-cao,YU Xiao-yi,MIAO Wei,et al.The preparation and behavior in annealing of the yttria dispersed Ferrum films[J].Journal of Shenzhen University Science and Engineering,2010,27(3):273.
[3]马运柱,李静,刘文胜.钨晶须制备及生长机理研究[J].深圳大学学报理工版,2011,28(No.2(095-188)):183.
 MA Yun-zhu,LI Jing,and LIU Wen-sheng.Preparation and growth mechanism of tungsten whiskers[J].Journal of Shenzhen University Science and Engineering,2011,28(3):183.
[4]曹慧群,张欣鹏,樊先平,等.铜铟镓硒纳米颗粒制备技术的研究进展[J].深圳大学学报理工版,2012,29(No.3(189-282)):247.[doi:10.3724/SP.J.1249.2012.03247]
 CAO Hui-qun,ZHANG Xin-peng,FAN Xian-ping,et al.Research progress on synthesis of CuIn1-xGaxSe2 nanoparticles[J].Journal of Shenzhen University Science and Engineering,2012,29(3):247.[doi:10.3724/SP.J.1249.2012.03247]
[5]汝丽丽,孟月东,陈龙威.氦等离子体前处理对多晶硅薄膜性能的影响[J].深圳大学学报理工版,2013,30(No.4(331-440)):398.[doi:10.3724/SP.J.1249.2013.04398]
 Ru Lili,Meng Yuedong,and Chen Longwei.Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films[J].Journal of Shenzhen University Science and Engineering,2013,30(3):398.[doi:10.3724/SP.J.1249.2013.04398]
[6]徐宏,刘剑洪,蔡弘华,等.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报理工版,2002,19(2):13.
 XU Hong,LIU Jian-hong,CAI Hong-hua and TIAN De-yu.Synthesis of Nanometer-sized Cerium Oxide and Its Effect on Catalyzing Decomposition of Absorbent Powder[J].Journal of Shenzhen University Science and Engineering,2002,19(3):13.
[7]李春,胡晓影,何天应,等.二维原子晶体半导体转移技术研究进展[J].深圳大学学报理工版,2018,35(3):257.[doi:10.3724/SP.J.1249.2018.03257]
 LI Chun,HU Xiaoying,HE Tianying,et al.Recent progress on transfer techniques oftwo-dimensional atomically thin semiconductor[J].Journal of Shenzhen University Science and Engineering,2018,35(3):257.[doi:10.3724/SP.J.1249.2018.03257]
[8]李启华,邓立波,张培新.钙钛矿太阳能电池二氧化锡电子传输层的优化[J].深圳大学学报理工版,2019,36(4):392.[doi:10.3724/SP.J.1249.2019.04392]
 LI Qihua,DENG Libo,and ZHANG Peixin.Optimization of tin oxide-based electron transport layer for perovskite solar cells[J].Journal of Shenzhen University Science and Engineering,2019,36(3):392.[doi:10.3724/SP.J.1249.2019.04392]
[9]宋宗鹏,章瑛,蒋凌峰,等.钙钛矿CsPbBr3中光生载流子的动力学行为[J].深圳大学学报理工版,2019,36(5):557.[doi:10.3724/SP.J.1249.2019.05557]
 SONG Zongpeng,ZHANG Ying,JIANG Lingfeng,et al.Dynamics of photo-excited carriers in CsPbBr3 perovskite[J].Journal of Shenzhen University Science and Engineering,2019,36(3):557.[doi:10.3724/SP.J.1249.2019.05557]

备注/Memo

备注/Memo:
Received:2020-03-28;Accepted:2020-04-30
Foundation:Natural Science Foundation of Guangdong Province (2019A1515011367, 2016A030310055)
Corresponding author:Lecture SUN Zhenhua.E-mail: szh@szu.edu.cn
Citation:WEN Jiamin, YAN Chengyuan, SUN Zhenhua. Floating gate transistor non-volatile memory with multi-programming method[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(3): 232-238.(in Chinese)
基金项目:广东省自然科学基金资助项目 (2019A1515011367, 2016A030310055)
作者简介:温嘉敏(1994—),深圳大学硕士研究生.研究方向:薄膜光电晶体管.E-mail:706833447@qq.com
引文:温嘉敏,闫成员,孙振华. 多编程手段的浮栅晶体管非易失性存储器[J]. 深圳大学学报理工版,2021,38(3):232-238.
更新日期/Last Update: 2021-05-30