[1]邵永红,郑晓敏,汪磊,等.虚拟结构光照明双光子荧光显微成像[J].深圳大学学报理工版,2021,38(3):221-226.[doi:10.3724/SP.J.1249.2021.03221]
 SHAO Yonghong,ZHENG Xiaomin,WANG Lei,et al.Two-photon virtual structured illumination microscopy[J].Journal of Shenzhen University Science and Engineering,2021,38(3):221-226.[doi:10.3724/SP.J.1249.2021.03221]
点击复制

虚拟结构光照明双光子荧光显微成像()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第3期
页码:
221-226
栏目:
光电工程
出版日期:
2021-05-14

文章信息/Info

Title:
Two-photon virtual structured illumination microscopy
文章编号:
202103001
作者:
邵永红郑晓敏汪磊吴文帅周洁陈嘉杰
深圳大学物理与光电工程学院,光电器件与系统教育部/广东省重点实验室,广东深圳 518060
Author(s):
SHAO Yonghong ZHENG Xiaomin WANG Lei WU Wenshuai ZHOU Jie and CHEN Jiajie
College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
光学工程荧光成像超分辨成像双光子成像结构光照明虚拟结构光照明
Keywords:
optical engineering fluorescence imaging super-resolution microscopy two-photon imaging structured illumination virtual structured illumination
分类号:
O4
DOI:
10.3724/SP.J.1249.2021.03221
文献标志码:
A
摘要:
结构光照明单光子荧光超分辨显微成像技术已经成为生命科学研究的重要手段. 为提高荧光显微成像技术的分辨率与成像深度,提出虚拟结构光照明双光子荧光超分辨成像方法,建立虚拟结构光照明双光子荧光超分辨成像理论模型,并分别对Lena图像和100 nm荧光珠进行模拟成像实验.结果表明,系统的空间分辨率提高了1.95倍.这项超分辨成像技术既具有双光子荧光成像的光学切片能力与成像深度大的优点,还具有虚拟结构光照明超分辨成像的能力,对高散射的厚生物样本甚至活细胞动态超分辨成像具有重要的潜在应用价值.
Abstract:
One-photon structured illumination microscopy (SIM) is a powerful tool in the field of life science. To improve the resolution and imaging depth of fluorescence microscopy, we propose a novel super-resolution microscopy called two-photon virtual SIM (2p-vSIM), and establish an imaging theory model for it. To verify the resolving ability of 2p-vSIM, we carry out the simulation experiments on the Lena image and 100 nm fluorescent beads. The results show that the imaging resolution is increased by a factor of 1.95 compared with conventional two-photon imaging technology. Our 2p-vSIM has the advantages of optical sectioning and large imaging depth of two-photon microscopy as well as the super-resolution ability of virtual SIM, and enables super-resolution imaging of thick biological samples with high scattering and even dynamic super-resolution imaging of live cells.

参考文献/References:

[1] KLAR T A, HELL S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14): 954-956.
[2] KLEIN T, PROPPERT S, SAUER M. Eight years of single-molecule localization microscopy[J]. Histochemistry and Cell Biology, 2014, 141(6): 561-575.
[3] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.
[4] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展[J]. 物理学报, 2017, 66(14):271-293.
LIN Danying, QU Junle. Recent progress on super-resolution imaging and correlative super-resolution microscopy[J]. Acta Physica Sinica, 2017, 66(14): 271-293.(in Chinese)
[5] 张崇磊, 辛自强, 闵长俊, 等. 表面等离激元结构光照明显微成像技术研究进展[J]. 物理学报, 2017, 66(14): 239-255.
ZHANG Chonglei, XIN Ziqiang, MIN Changjun, et al. Research progress of plasmonic structure illumination microscopy[J] Acta Physica Sinica, 2017, 66(14): 239-255.(in Chinese)
[6] LI Dong, SHAO Lin, CHEN Bichang, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): aab3500.
[7] MARKWIRTH A, LACHETTA M, MONKEMOLLER V, et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 2019, 10(1): 4315.
[8] LAL A, SHAN Chunyan, XI Peng. Structured illumination microscopy image reconstruction algorithm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 6803414.
[9] SHROFF S A, FIENUP J R, WILLIAMS D R. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution[J]. Journal of the Optical Society of America A, 2009, 26(2): 413-424.
[10] 赵天宇, 周兴, 但旦, 等. 结构光照明显微中的偏振控制[J]. 物理学报, 2017, 66(14): 288-299.
ZHAO Tianyu, ZHOU Xing, DAN Dan, et al. Polarization control methods in structured illumination microscopy[J]. Acta Physica Sinica, 2017, 66(14): 288-299.(in Chinese)
[11] KUANG Cuifang, MA Ye, ZHOU Renjie, et al. Virtual k-space modulation optical microscopy[J]. Physical Review Letters, 2016, 117(2): 028102.
[12] CAO Ruizhi, KUANG Cuifang, LIU Yong, et al. Superresolution via saturated virtual modulation microscopy[J]. Optics Express, 2017, 25(26): 32364-32379.
[13] LU Rongwen, WANG Benquan, ZHANG Qiuxiang, et al. Super-resolution scanning laser microscopy through virtually structured detection[J]. Biomedical Optics Express, 2013, 4(9): 1673-1682.
[14] ZHI Ya’nan, LU Rongwen, WANG Benquan, et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J]. Optics Letters, 2015, 40(8): 1683-1686.
[15] LIU Changgeng, ZHI Ya’nan, WANG Benquan, et al. In vivo super-resolution retinal imaging through virtually structured detection[J]. Journal of Biomedical Optics, 2016, 21(12): 120502.
[16] 高兴宇, 萧泽新, 伍世荣. 线结构光共焦显微成像技术的实验研究[J]. 光学技术, 2006, 32(增刊1): 173-175.
GAO Xingyu,XlAO Zexin,WU Shirong. The experiment research of line constructive laser confocal microscope technique[J]. Optical Technique, 2006, 32(Suppl.1): 173-175.(in Chinese)
[17] KNIG K. Multiphoton microscopy in life sciences[J]. Journal of Microscopy, 2010, 200(Pt 2): 83-104.
[18] ISOBE K, TAKEDA T, MOCHIZUKI K, et al. Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination[J]. Biomedical Optics Express, 2013, 4(11): 2396-2410.

相似文献/References:

[1]李春波,余春晖,柴金龙,等.超高速摄影仪转镜模态数值仿真分析[J].深圳大学学报理工版,2011,28(No.6(471-564)):513.
 LI Chun-bo,YU Chun-hui,CHAI Jin-long,et al.Modal analysis through numerical and experimental methods for rotating mirror of ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2011,28(3):513.
[2]李春波,余春晖,李景镇,等.基于拓扑理论的超高速摄影仪转镜结构设计[J].深圳大学学报理工版,2012,29(No.4(283-376)):304.[doi:10.3724/SP.J.1249.2012.04304]
 LI Chun-bo,YU Chun-hui,LI Jing-zhen,et al.Structure design of rotating mirror based on the topology optimization theory for ultra-high speed camera[J].Journal of Shenzhen University Science and Engineering,2012,29(3):304.[doi:10.3724/SP.J.1249.2012.04304]
[3]雷耀虎,刘鑫,郭金川,等.超声对X射线分析光栅铋填充率影响研究[J].深圳大学学报理工版,2016,33(2):138.[doi:10.3724/SP.J.1249.2016.02138]
 Lei Yaohu,Liu Xin,Guo Jinchuan,et al.Influence of ultrasonic on filling ratio of Bi in X-ray analyzer gratings[J].Journal of Shenzhen University Science and Engineering,2016,33(3):138.[doi:10.3724/SP.J.1249.2016.02138]
[4]雷耀虎,黄建衡,刘鑫,等.X射线微分相衬成像系统莫尔条纹对比度的改善[J].深圳大学学报理工版,2016,33(5):506.[doi:10.3724/SP.J.1249.2016.05506]
 Lei Yaohu,Huang Jianheng,Liu Xin,et al.Improvement of visibility of moiré fringe in X-ray differential phase-contrast imaging[J].Journal of Shenzhen University Science and Engineering,2016,33(3):506.[doi:10.3724/SP.J.1249.2016.05506]
[5]王冬冬,谢晓华,任席奎,等.1 764 nm调Q锁模自拉曼激光器研究[J].深圳大学学报理工版,2016,33(5):501.[doi:10.3724/SP.J.1249.2016.05501]
 Wang Dongdong,Xie Xiaohua,Ren Xikui,et al.Study on Q-switched and mode-locked self-Raman laser at 1 764[J].Journal of Shenzhen University Science and Engineering,2016,33(3):501.[doi:10.3724/SP.J.1249.2016.05501]
[6]黄建衡,雷耀虎,刘鑫,等.X射线大视场相衬成像位移误差的数值分析[J].深圳大学学报理工版,2017,34(1):8.[doi:10.3724/SP.J.1249.2017.01008]
 Huang Jianheng,Lei Yaohu,Liu Xin,et al.Numerical analysis of shift error in X-ray phase contrast imaging for large field of view[J].Journal of Shenzhen University Science and Engineering,2017,34(3):8.[doi:10.3724/SP.J.1249.2017.01008]
[7]洪振厚,周彬,郭金川.锥束X射线CT图像重建的新型滤波函数[J].深圳大学学报理工版,2017,34(3):284.[doi:10.3724/SP.J.1249.2017.03284]
 Hong Zhenhou,Zhou Bin,and Guo Jinchuan.A new filter function for the image reconstruction of cone beam X-ray CT[J].Journal of Shenzhen University Science and Engineering,2017,34(3):284.[doi:10.3724/SP.J.1249.2017.03284]
[8]刘伟,刘双龙,陈丹妮,等.CARS显微成像系统的空间分辨率标定[J].深圳大学学报理工版,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
 Liu Wei,Liu Shuanglong,Chen Danni,et al.Three-dimensional spatial resolution calibration of the coherent anti-Stokes Raman scattering microscopy[J].Journal of Shenzhen University Science and Engineering,2017,34(3):272.[doi:10.3724/SP.J.1249.2017.03272]
[9]李恒,陈丹妮,于斌,等.DH-PSF三维动态多粒子追踪在活细胞成像的应用[J].深圳大学学报理工版,2017,34(5):526.[doi:10.3724/SP.J.1249.2017.05526]
 Li Heng,Chen Danni,et al.Application of DH-PSF three-dimensional dynamic multi-particle tracking method in living cell imaging[J].Journal of Shenzhen University Science and Engineering,2017,34(3):526.[doi:10.3724/SP.J.1249.2017.05526]
[10]章瑛,郑吉林,齐红基,等.多层介质薄膜的陡边设计与研究[J].深圳大学学报理工版,2018,35(5):484.[doi:10.3724/SP.J.1249.2018.05484]
 ZHANG Ying,ZHENG Jilin,QI Hongji,et al.Design and research of steep side of the multi-layer dielectric thin films[J].Journal of Shenzhen University Science and Engineering,2018,35(3):484.[doi:10.3724/SP.J.1249.2018.05484]

备注/Memo

备注/Memo:
Received:2020-11-02;Accepted:2020-11-26
Foundation:National Natural Science Foundation of China (61775148, 61527827)
Corresponding author:Professor SHAO Yonghong. E-mail: shaoyh@szu.edu.cn
Citation:SHAO Yonghong, ZHENG Xiaomin, WANG Lei, et al. Two-photon virtual structured illumination microscopy[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(3): 221-226.(in Chinese)
基金项目:国家自然科学基金资助项目(61775148, 61527827)
作者简介:邵永红(1972—),深圳大学教授、博士生导师.研究方向:生物医学光子学显微成像与传感.E-mail:shaoyh@szu.edu.cn
引文:邵永红,郑晓敏,汪磊,等. 虚拟结构光照明双光子荧光显微成像[J]. 深圳大学学报理工版,2021,38(3):221-226.
更新日期/Last Update: 2021-05-30