参考文献/References:
[1] 马超群, 马宗刚. 基于 Vasicek 和 CIR 模型的巨灾风险债券定价[J]. 系统工程, 2013, 31(9): 33-38.
MA Chaoqun, MA Zonggang. Pricing catastrophe risk bonds using the Vasicek and CIR models[J]. Systems Engineering, 2013, 31(9): 33-38.(in Chinese)
[2] 谢卓伦, 陈佳琰, 叶露. 中国大陆地区地震巨灾风险的分布拟合及债券定价[J]. 浙江理工大学学报, 2019, 42(1): 10-19.
XIE Zhuolun, CHEN Jiayan, YE Lu. Distribution fitting of earthquake catastrophe risk and bond pricing in mainland China[J]. Journal of Zhejiang Sci-Tech University, 2019, 42(1): 10-19.(in Chinese)
[3] 马宗刚, 马超群, 肖时松. 台风风暴潮债券定价——基于我国沿海1989-2015灾害数据[J]. 系统工程, 2017, 35(9): 18-26.
MA Zonggang, MA Chaoqun, XIAO Shisong. Pricing typhoon bonds based on storm surge disaster in coastal areas of China:based on the data from 1989 to 2015[J]. Systems Engineering, 2017, 35(9): 18-26.(in Chinese)
[4] GEMAN H, YOR M. Stochastic time changes in catastrophe option pricing[J]. Insurance: Mathematics and Economics, 1997, 21(3): 185-193.
[5] HEYDE C C, WANG D. Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims[J]. Advances in Applied Probability, 2009, 41(1): 206-224.
[6] 苏必豪, 李婧超. 经典风险模型中破产变量的联合分布[J].深圳大学学报理工版, 2019, 36(4): 419-423.
SU Bihao, LI Jingchao. The joint distribution of ruin related quantities in the classical risk model[J].Journal of Shenzhen University Science and Engineering, 2019, 36(4): 419-423.(in Chinese)
[7] BENSON D A, SCHUMER R, MEERSCHAERT M M. Recurrence of extreme events with power‐law interarrival times[J]. Geophysical Research Letters, 2007, 34(16): L16404.
[8] MUSSON R M W, TSAPANOS T, NAKAS C T. A power-law function for earthquake interarrival time and magnitude[J]. Bulletin of the Seismological Society of America, 2002, 92(5): 1783-1794.
[9] SALIM A, PAWITAN Y. Extensions of the Bartlett-Lewis model for rainfall processes[J]. Statistical Modelling, 2003, 3(2): 79-98.
[10] STOYNOV P, ZLATEVA P, VELEV D, et al. Modelling of major flood arrivals on Chinese rivers by switch-time processes[C]// The 3rd International Conference on Advances in Environment Research. Beijing: IOP Publishing, 2017: 012006.
[11] REPIN O N, SAICHEV A I. Fractional Poisson law[J]. Radiophysics and Quantum Electronics, 2000, 43(9): 738-741.
[12] BIARD R, SAUSSEREAU B. Fractional Poisson process: long-range dependence and applications in ruin theory[J]. Journal of Applied Probability, 2014, 51(3): 727-740.
[13] SCALAS E. A class of CTRWs: compound fractional Poisson processes[M]// KLAFTER J, LIM S C, METZLER R. Fractional dynamics. Hackensack, USA: World Scientific Publication, 2012: 353-374.
[14] MAHESHWARI A, VELLAISAMY P. On the long-range dependence of fractional Poisson and negative binomial processes[J]. Journal of Applied Probability, 2016, 53(4): 989-1000.
[15] WANG Ying, WANG Dehui, ZHU Fukang. Estimation of parameters in the fractional compound Poisson process[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10): 3425-3430.
[16] SCALAS E, VILES N. On the convergence of quadratic variation for compound fractional Poisson processes[J]. Fractional Calculus and Applied Analysis, 2012, 15(2): 314-331.
[17] ZHANG Jiesong. Optimal layer reinsurance for compound fractional Poisson model[J]. Discrete Dynamics in Nature and Society, 2019(16): 1-8.
[18] LASKIN N. Fractional Poisson process[J]. Communications in Nonlinear Science and Numerical Simulation, 2003, 8(3): 201-213.
[19] JARROW R A. The term structure of interest rates[J]. The Annual Review of Financial Economics, 2009, 1(1): 69-96.
[20] 谢赤, 吴雄伟. 基于 Vasicek 和 CIR 模型中的中国货币市场利率行为实证分析[J]. 中国管理科学, 2002, 10(3): 22-25.
XIE Chi, WU Xiongwei. An empirical analysis of the interest rate behavior in China’s monetary market using the Vasicek and CIR models[J]. Chinese Journal of Management Science, 2002, 10(3): 22-25.(in Chinese)
[21] COX S H, PEDERSEN H W. Catastrophe risk bonds[J]. North American Actuarial Journal, 2000, 4(4): 56-82.
[22] LEE J P, YU M T. Pricing default-risky CAT bonds with moral hazard and basis risk[J]. Journal of Risk and Insurance, 2002, 69(1): 25-44.
[23] BAI Lihua, CAI Jun, ZHOU Ming. Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting[J]. Insurance: Mathematics and Economics, 2013, 53(3): 664-670.
[24] JOHNSON M A, TAAFFE M R. Matching moments to phase distributions: mixtures of Erlang distributions of common order[J]. Stochastic Models, 1989, 5(4): 711-743.
[25] LINDSKOG F, MCNEIL A J. Common Poisson shock models: applications to insurance and credit risk modeling[J]. ASTIN Bulletin: The Journal of the IAA, 2003, 33(2): 209-238.
[26] BARGES M, COSSETTE H, LOISEL S, et al. On the moments of aggregate discounted claims with dependence introduced by a FGM copula[J]. ASTIN Bulletin: The Journal of the IAA, 2011, 41(1): 215-238.
[27] BEGHIN L, ORSINGHER E. Fractional Poisson processes and related planar random motions[J]. Electronic Journal of Probability, 2009, 14: 1790-1826.
[28] 王颖. 复合分数阶泊松过程的参数估计及应用[D]. 长春: 吉林大学, 2015.
WANG Ying. Parameter estimation and application of the fractional compound Poisson process[D]. Changchun: Jilin University, 2015.(in Chinese)