参考文献/References:
[1] 何清,李宁,罗文娟,等.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,27(4):327-336.
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336.(in Chinese)
[2] DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113.
[3] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: cluster computing with working sets[C]// Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, USA: USENIX Association, 2010: 10.
[4] 魏丞昊,黄哲学,何玉林.基于统计感知的大数据系统计算框架[J].深圳大学学报理工版,2018,35(5):441-443.
WEI Chenghao, HUANG Zhexue, HE Yulin. Statistical aware based big data system computing framework[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(5): 441-443.(in Chinese)
[5] SALLOUM S, HUANG J Z, HE Yulin. Random sample partition: a distributed data model for big data analysis[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 5846-5854.
[6] 黄哲学,何玉林,魏丞昊,等.大数据随机样本划分模型及相关分析计算技术[J].数据采集与处理,2019,34(3):373-385.
HUANG Zhexue, HE Yulin, WEI Chenghao, et al. Random sample partition data model and related technologies for big data analysis[J]. Journal of Data Acquisition and Processing, 2019, 34(3): 373-385.(in Chinese)
[7] GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13: 723-773.
[8] 李洪奇,徐青松,朱丽萍,等.基于数据集相似性的分类算法推荐[J].计算机应用与软件,2016,33(8):62-66.
LI Hongqi, XU Qingsong, ZHU Liping, et al. Classification algorithms recommendation based on dataset similarity[J]. Computer Applications and Software, 2016, 33(8): 62-66.(in Chinese)
[9] 冀振燕,宋晓军,皮怀雨,等.基于深度学习的融合多源异构数据的推荐模型[J].北京邮电大学学报,2019,42(6):35-42.
JI Zhenyan, SONG Xiaojun, PI Huaiyu, et al. Recommended model for fusing multi-source heterogeneous data based on deep learning[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(6): 35-42.(in Chinese)
[10] 杨景玉,张珩,李宝文,等.多源异构遥感大数据的高性能存储技术研究[J].兰州交通大学学报,2019,38(1):50-56.
YANG Jingyu, ZHANG Heng, LI Baowen, et al. Research on storage performance improvement technology of multi-source heterogeneous remote sensing big data[J]. Journal of Lanzhou Jiaotong University, 2019, 38(1): 50-56.(in Chinese)
[11] 吴宾,娄铮铮,叶阳东.一种面向多源异构数据的协同过滤推荐算法[J].计算机研究与发展,2019,56(5):1034-1047.
WU Bin, LOU Zhengzheng, YE Yangdong. A collaborative filtering recommendation algorithm for multi-source heterogeneous data[J]. Journal of Computer Research and Development, 2019, 56(5): 1034-1047.
[12] LI Jie, CHEN Jiahao, ZHANG Xueqin, et al. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University Science and Technology, 2019, 59(7): 523-529.
[13] RODRGUEZ P, BAUTISTA M A, GONZALEZ J, et al. Beyond one-hot encoding: lower dimensional target embedding[J]. Image and Vision Computing, 2018, 75: 21-31.
[14] HUANG Tinglin, HE Yulin, DAI Dexin, et al. Neural network-based deep encoding for mixed-attribute data classification[C]// The 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Ho Chi Minh City: Springer, 2019: 153-163.
[15] ALCAL-FDEZ J, FERNANDEZ A, LUENGO J, et al. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic and Soft Computing, 2011, 17(2/3): 255-287.
[16] HE Yulin, LIU J N K, WANG Xizhao, et al. Optimal bandwidth selection for re-substitution entropy estimation[J]. Applied Mathematics and Computation, 2012, 219(8): 3425-3460.
[17] WEI Chenghao, SALLOUM S, EMARA T Z, et al. A two-stage data processing algorithm to generate random sample partitions for big data analysis[C]// International Conference on Cloud Computing.[S. l.]: Springer, 2018: 347-364.
[18] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
[19] CAO Jiuwen, LIN Zhiping, HUANG Guangbin, et al. Voting based extreme learning machine[J]. Information Sciences, 2012, 185(1): 66-77.
相似文献/References:
[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(2):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(2):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(2):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(2):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(2):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(2):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(2):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(2):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]王守觉,鲁华祥,陈向东,等.人工神经网络硬件化途径与神经计算机研究[J].深圳大学学报理工版,1997,14(1):8.
Wang Shoujue,Lu Huaxiang,Chen Xiangdong and Zeng Yujuan.On the Hardware for Artificial Neural Networks and Neurocomputer[J].Journal of Shenzhen University Science and Engineering,1997,14(2):8.