[1]张健超,彭少成,匡川,等.原位加载下橡胶砂浆断裂的可视化和量化分析[J].深圳大学学报理工版,2021,38(2):144-150.[doi:10.3724/SP.J.1249.2021.02144]
 ZHANG Jianchao,PENG Shaocheng,et al.Visualization and quantitative fracture analysis of rubber mortar under in-situ loading[J].Journal of Shenzhen University Science and Engineering,2021,38(2):144-150.[doi:10.3724/SP.J.1249.2021.02144]
点击复制

原位加载下橡胶砂浆断裂的可视化和量化分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第2期
页码:
144-150
栏目:
土木建筑工程
出版日期:
2021-03-12

文章信息/Info

Title:
Visualization and quantitative fracture analysis of rubber mortar under in-situ loading
文章编号:
202102005
作者:
张健超12彭少成2匡川2翁建武2董必钦2洪舒贤2邢锋12
1)中国地震局工程力学研究所,中国地震局地震工程与工程振动重点实验室,黑龙江哈尔滨 150080
2)深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,广东深圳518060
Author(s):
ZHANG Jianchao1 2 PENG Shaocheng2 KUANG Chuan2 WENG Jianwu2 DONG Biqin2 HONG Shuxian2 and XING Feng1 2
1) Institute of Engineering Mechanics, Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin 150080, Heilongjiang Province, P.R.China
2) College of Civil and Transportation Engineering, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
建筑材料橡胶砂浆三维可视化X射线微观层析成像裂缝发展图像处理
Keywords:
building materials rubber mortar 3D-visualization X-ray micro-computed tomography crack propagation image processing
分类号:
TU528
DOI:
10.3724/SP.J.1249.2021.02144
文献标志码:
A
摘要:
为提高材料的延展性,经常在水泥基材料中加入橡胶,但橡胶-水泥界面会产生更多的初始缺陷,由X射线微观层析成像技术得到的三维图像更加复杂,导致以全阈值法为主的传统方法不再适用于对内部三维裂缝进行分析.提出一种改进的图像处理方法,能够准确识别介观裂缝,完成孔和裂缝的分离.采用X射线层析成像原位观测技术对不同质量分数的橡胶砂浆进行测试,通过该方法识别并分离孔和裂缝,得到裂缝发展的可视化过程,分析橡胶加入对裂缝形成的影响.定量分析表明,该方法相比传统方法,能更好地识别介观裂缝,具有更高的精度;由于橡胶的掺入,橡胶砂浆内部产生更多的初始裂缝,但增加了试样整体对输入能量的吸收,使受压破坏时的大裂缝数量和总裂缝体积减小,与未掺入橡胶的试样相比,橡胶质量分数为5%和10%的试样总裂缝体积分别减小30%和45%左右.
Abstract:
In order to improve the ductilityof cement-based materials, rubber is often added to cement-based materials. But the rubber-cement interface will introduce more initial defects, and make the three dimensional images obtained by the X-ray micro-computed tomography (X-ray μCT) technology more complex, and finally,which leads to the full threshold method no longer applicable to analysis of the internal three-dimensional cracks.This paper presents an improved image processing method, which can accurately identify mesoscopic cracks and achieve the separation of pores and cracks. In order to verify this method, X-ray computed tomography (XCT) in-situ observation technology is used to obtain the crack formation of rubber mortar with different replacement ratios. Pores and cracks are well identified and separated by this method. Quantitative analysis shows that the new method has higher accuracy and better identification of mesoscopic cracks than traditional methods. Due to the incorporation of rubber, there are more initial cracks in the rubber mortar, but the rubber will improve the overall absorption of the input energy of the sample, resulting in a decrease in the number of large cracks and the total crack volume when the specimen is failure.Compared with the sample without rubber content, the total crack volume of the sample with 5% and 10% mass fraction of rubber decreases by 30% and 45%, respectively.

参考文献/References:

[1] 岳雪涛, 刘冲昊, 王可良,等. 橡胶混凝土的研究进展[J].山西建筑, 2018, 44(32): 115-116.
YUE Xuetao, LIU Chonghao, WANG Keliang, et al.Research progress of rubber concrete[J].Shanxi Architecture, 2018, 44(32): 115-116.(in Chinese)
[2] SUKMAK G, SUKMAK P, HORPIBULSUK S, et al. Physical and mechanical properties of natural rubber modified cement paste[J]. Construction and Building Materials, 2020, 244:118319.
[3] WANG Jiaqing, DAI Qingli, SI Ruizhe, et al. Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete[J]. Journal of Cleaner Production, 2019, 234:1351-1364.
[4] ZABIHI S M, TAVAKOLI H, MOHSENI E. Engineering and microstructural properties of fiber-reinforced rice husk-ash based geopolymerconcrete[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018183.
[5] LI Yang, ZHANG Shuai, WANG Ruijun, et al. Potential use of waste tire rubber as aggregate in cement concrete:acomprehensive review[J]. Construction and Building Materials, 2019, 225(1):183-201.
[6] THOMAS B S, CHANDRA G R. Properties of high strength concrete containing scrap tire rubber[J]. Journal of Cleaner Production, 2016, 113: 86-92.
[7] THOMAS B S, GUPTA R C. A comprehensive review on the applications of waste tire rubber in cement concrete[J]. Renewable and Sustainable Energy Reviews, 2016, 54(13): 23-33.
[8] JALAL M, NASSIR N, JALAL H. Waste tire rubber and pozzolans in concrete: atrade-off between cleaner production and mechanical properties in a greener concrete[J]. Journal of Cleaner Production, 2019, 238: 117882.
[9] ZHENG Lei, SHARON H X, YUAN Yong. Experimental investigation on dynamic properties of rubberized concrete[J]. Construction and Building Materials, 2008, 22(5): 939-947.
[10] YOUSSF O, HASSANLI R, MILLS J E, et al. An experimental investigation of the mechanical performance and structural application of LECA-Rubcrete[J]. Construction and Building Materials, 2018, 175(2): 39-53.
[11] ADAMU M, MOHAMMED B S, LIEW M S, et al. Evaluating the impact resistance of roller compacted concrete containing crumb rubber and nanosilica using response surface methodology and Weibull distribution[J]. World Journal of Engineering, 2019, 16(1):33-43.
[12] ALAM S Y, LOUKILI A. Effect of micro-macro crack interaction on softening behaviour of concrete fracture[J]. International Journal of Solids and Structures, 2020, 182: 34-45.
[13] 滕晓娟, 刘昱清, 刘鹏, 等. 弯曲荷载诱发微型梁开裂演化过程的可视分析[J].深圳大学学报理工版, 2018, 35(5): 24-30.
TENG Xiaojuan, LIU Yuqing, LIU Peng, et al.Visual analysis of crack evolution process of microbeam induced by bending load[J]. Journal of Shenzhen University Science and Engineering, 2018, 35(5): 24-30.(in Chinese)
[14] HONG Shuxian, LIU Peng, ZHANG Jianchao, et al. Visual & quantitative identification of cracking in mortar subjected to loads using X-ray computed tomography method[J]. Cement and Concrete Composites, 2019, 100: 15-24.
[15] YANG Zhenjun, REN Wenyuan, SHARMA R, et al. In-situ X-ray computed tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of concrete[J]. Cement and Concrete Composites, 2017, 75: 74-83.
[16] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[17] GUO Jiebin, HE Chuanjiang, ZHANG Xiaoting. Nonlinear edge-preserving diffusion with adaptive source for document images binarization[J]. Applied Mathematics and Computation, 2019, 351:8-22.
[18] TAN Y, KIEKENS K, KRUTH J P, et al. Material dependent thresholdingfor dimensional X-ray computed tomography[C]// International Symposium on Digital Industrial Raidologyand Computed Tomography. Berlin:[s.n.],2011.
[19] XU Jie, FU Zhengwu, HAN Qinghua, et al. Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques[J]. Structural Health Monitoring, 2017, 17(4): 946-958.
[20] AKONO A T, CHEN J, KAEWUNRUEN S. Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale[J]. Construction and Building Materials, 2018, 175: 735-745.
[21] KHALID R, JAVAID N. A survey on hyperparametersoptimization algorithms of forecasting models in smart grid[J]. Sustainable Cities and Society, 2020, 61:102275.

相似文献/References:

[1]张亚芳,陈江平.不同掺量玻璃纤维增强水泥细观数值研究[J].深圳大学学报理工版,2010,27(1):103.
 ZHANG Ya-fang and CHEN Jiang-ping.Numerical study on glass fiber reinforced cement with different incorporation rates[J].Journal of Shenzhen University Science and Engineering,2010,27(2):103.
[2]刘贤淼,江泽慧,费本华.玻璃纤维布增强造纸脱墨污泥纤维板性能研究[J].深圳大学学报理工版,2012,29(No.4(283-376)):371.[doi:10.3724/SP.J.1249.2012.04371]
 LIU Xian-miao,JIANG Ze-hui,and FEI Ben-hua.Paper deinking sludge fiberboard reinforced by fiberglass fabric[J].Journal of Shenzhen University Science and Engineering,2012,29(2):371.[doi:10.3724/SP.J.1249.2012.04371]
[3]付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报理工版,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
 Fu Ye,Li Qinghua,and Xu Shilang.The effects of high temperature on flexural strengths of high performance nano-modified cementitious composites[J].Journal of Shenzhen University Science and Engineering,2014,31(2):187.[doi:10.3724/SP.J.1249.2014.02187]
[4]彭家惠,刘先锋,张建新,等.磷酸盐对α半水脱硫石膏凝结硬化的作用机理[J].深圳大学学报理工版,2014,31(4):388.[doi:10.3724/SP.J.1249.2014.04388]
 Peng Jiahui,Liu Xianfeng,Zhang Jianxin,et al.Mechanisms of phosphate on the hydration and hardening of α-hemihydrate desulfurization gypsum[J].Journal of Shenzhen University Science and Engineering,2014,31(2):388.[doi:10.3724/SP.J.1249.2014.04388]
[5]倪卓,邢锋,石开勇,等.微胶囊对水泥自修复复合材料微观结构的影响[J].深圳大学学报理工版,2015,32(1):68.[doi:10.3724/SP.J.1249.2015.01068]
 Ni Zhuo,Xing Feng,Shi Kaiyong,et al.Influence of microcapsule on microcosmic structure of self-healing cementitious composite[J].Journal of Shenzhen University Science and Engineering,2015,32(2):68.[doi:10.3724/SP.J.1249.2015.01068]
[6]童芸芸,叶良,马超.钢筋腐蚀产物实时检测的再钝化机理分析[J].深圳大学学报理工版,2017,34(1):75.[doi:10.3724/SP.J.1249.2017.01075]
 Tong Yunyun,Ye Liang,and Ma Chao.Real time analysis on repassivation mechanism of steel rebar corrosion products[J].Journal of Shenzhen University Science and Engineering,2017,34(2):75.[doi:10.3724/SP.J.1249.2017.01075]
[7]刘昱清,董鹏,滕晓娟,等.基于X-ray μCT技术的钢筋锈胀特征分析[J].深圳大学学报理工版,2017,34(6):618.[doi:10.3724/SP.J.1249.2017.06618]
 Liu Yuqing,Dong Peng,Teng Xiaojuan,et al.Characterization of corrosion expansion feature of steel bar by means of X-ray μCT[J].Journal of Shenzhen University Science and Engineering,2017,34(2):618.[doi:10.3724/SP.J.1249.2017.06618]
[8]丁铸,孙晨,戴梦希.磷酸盐水泥砂浆作为锚固胶的性能研究[J].深圳大学学报理工版,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
 DING Zhu,SUN Chen,and DAI Mengxi.Properties of phosphate cement mortar as an anchorage adhesive[J].Journal of Shenzhen University Science and Engineering,2018,35(2):132.[doi:10.3724/SP.J.1249.2018.02132]
[9]刘斌清,仵江涛,陈华鑫,等.多聚磷酸改性沥青的路用性能及机理分析[J].深圳大学学报理工版,2018,35(3):292.[doi:10.3724/SP.J.1249.2018.03292]
 LIU Binqing,WU Jiangtao,et al.Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J].Journal of Shenzhen University Science and Engineering,2018,35(2):292.[doi:10.3724/SP.J.1249.2018.03292]
[10]董必钦,郭邦文,刘昱清,等.水泥净浆水分传输过程可视化表征与定量分析[J].深圳大学学报理工版,2018,35(3):285.[doi:10.3724/SP.J.1249.2018.03285]
 DONG Biqin,GUO Bangwen,LIU Yuqing,et al.Visualization and quantitative analysis of water transport evolution in cementitious materials[J].Journal of Shenzhen University Science and Engineering,2018,35(2):285.[doi:10.3724/SP.J.1249.2018.03285]

备注/Memo

备注/Memo:
Received:2020-06-03;Accepted:2020-10-25
Foundation:National Natural Science Foundation of China (51878411, 51727813); National Science Foundation for Outstanding Youth of China (51925805)
Corresponding author:Professor XING Feng.E-mail: xingf@szu.edu.cn
Citation:ZHANG Jianchao, PENG Shaocheng,KUANG Chuan, et al.Visualization and quantitative fracture analysis of rubber mortar under in-situ loading[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(2): 144-150.(in Chinese)
基金项目:国家自然科学基金资助项目(51878411,51727813);国家杰出青年科学基金资助项目(51925805)
作者简介:张健超(1991—),深圳大学博士研究生. 研究方向:土木工程无损检测及混凝土结构耐久性. E-mail: zhangjianchao728@163.com
引文:张健超,彭少成,匡川,等.原位加载下橡胶砂浆断裂的可视化和量化分析[J]. 深圳大学学报理工版,2021,38(2):144-150.
更新日期/Last Update: 2021-03-30