DU Haijun,ZHANG Jianguo,et al.Autonomous Boolean network and physical random number generator based on XOR gate[J].Journal of Shenzhen University Science and Engineering,2021,38(1):103-109.[doi:10.3724/SP.J.1249.2021.01103]





Autonomous Boolean network and physical random number generator based on XOR gate
杜海鋆1 2张建国1 2刘海芳1 2龚利爽1 2刘锋1 2王云才3
1) 太原理工大学新型传感器与智能控制教育部和山西省重点实验室, 山西太原 030024
2) 太原理工大学物理与光电工程学院, 山西太原030024;3) 广东工业大学信息工程学院, 广东广州510006
DU Haijun1 2 ZHANG Jianguo1 2 LIU Haifang1 2 GONG Lishuang1 2 LIU Feng1 2 and WANG Yuncai3
1) Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province,P.R.China
2) College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province,P.R.China
3) College of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong Province,P.R.China
physical electronics nonlinear system Boolean network chaotic circuit physical random number secure communications
自治布尔网络作为可调控的非线性系统,易于产生混沌信号. 利用二输入异或门的非线性特性实现一种可产生高熵值混沌的18节点自治布尔网络电路. 通过引入滤波系数,建立该电路的改进数学模型. 通过数值仿真和电路对比实验研究滤波系数和时延参数对网络动态特性的影响. 数值仿真结果与电路实验现象基本一致. 当节点之间传输延迟不相等时,滤波系数对混沌的产生具有调控作用, 表明引入滤波系数后的数学模型可以更客观描述电路中的物理现象. 借助分岔图、李雅普诺夫指数及排序熵进一步分析自治布尔网络电路的非线性特性和随机性,表明该电路输出的混沌序列具有高带宽和高熵值的特点. 将该电路用于产生高速物理随机序列,并通过了美国国家标准与技术研究院NIST SP 800-22随机性检测标准.
As a controllable nonlinear system, autonomous Boolean network which is easy to generate chaotic signals has become a hot research topic. We realize an 18-node autonomous Boolean network circuit which can generate high entropy chaos by using the nonlinear characteristics of two-input XOR gate, and establish an improved mathematical model for the circuit by introducing the filter coefficient. Through numerical simulation and circuit comparison experiment, we study the influence of filter coefficient and delay parameters on network dynamic characteristics of this model. The numerical simulation results are basically consistent with those of the experimental phenomena. When the transmission delay between nodes is not equal, the filter coefficient has a modulation effect on the generation of chaos, which well indicates that the introduction of the filter coefficient makes the improved mathematical model more objective to describe the physical phenomena in the circuit. In addition, using bifurcation diagram, Lyapunov exponent and permutation entropy, we further analyze the nonlinear characteristics and randomness of the autonomous Boolean network. The output chaotic sequence of the network has the characteristics of high bandwidth, high entropy and strong robustness, which is used to generate high speed physical random sequences and has passed the NIST SP 800-22 randomness tests of National Institute of Standards and Technology of America.


[1] MESTL T, BAGLEY R J, GLASS L. Common chaos in arbitrarily complex feedback networks[J]. Physical Review Letters, 1997, 79(4): 653-656.
[2] GREIL F, DROSSEL B. Dynamics of critical Kauffman networks under asynchronous stochastic update[J]. Physical Review Letters, 2005, 95(4): 048701.
[3] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器[J]. 物理学报, 2015, 64(24): 87-96.
YUAN Zeshi, LI Hongtao, ZHU Xiaohua. A digital-analog hybrid random number generator based on memristor[J]. Acta Physica Sinica, 2015, 64(24): 87-96.(in Chinese)
[4] 党小宇, 李洪涛, 袁泽世, 等. 基于数模混合的混沌映射实现[J]. 物理学报, 2015, 64(16): 171-179.
DANG Xiaoyu, LI Hongtao, YUAN Zeshi, et al. Chaotic map implementation based on digital-analog hybrid method[J]. Acta Physica Sinica, 2015, 64(16): 171-179.(in Chinese)
[5] 李璞, 江镭, 孙媛媛, 等. 面向全光物理随机数发生器的混沌实时光采样研究[J]. 物理学报, 2015, 64(23): 25-34.
LI Pu, JIANG Lei, SUN Yuanyuan, et al. Study on real-time optical sampling of chaotic laser for all-optical physical random number generator[J]. Acta Physica Sinica, 2015, 64(23):25-34.(in Chinese)
[6] ROSIN D P, RONTANI D, GAUTHIER D J. Ultra-fast generation of true random numbers using hybrid Boolean networks[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2012, 87(4):1316-1326.
[7] ROSIN D P, RONTANI D, GAUTHIER D J, et al. Control of synchronization patterns in neural-like Boolean networks[J]. Physical Review Letters, 2013, 110(10): 104102.
[8] RIVERA D, CAMPOS C E, CAMPOS C I, et al. Forced synchronization of autonomous dynamical Boolean networks[J]. Chaos, 2015, 25(8): 083113.
[9] 马荔, 张建国, 李璞,等. 基于自治布尔网络的高速物理随机数发生器研究[J]. 中南大学学报自然科学版, 2018, 284(4): 124-128.
MA Li, ZHANG Jianguo, LI Pu, et al. High-speed physical random number generator based on autonomous Boolean networks[J]. Journal of Central South University Science and Technology, 2018, 284(4):124-128.(in Chinese)
[10] DONG Lihua, YANG Hui, ZENG Yong. Analysis and improvement of true random number generator based on autonomous Boolean network[C]// The 13th International Conference on Computational Intelligence and Security (CIS). Hong Kong, China: IEEE, 2017: 243-247.
[11] 龚利爽, 侯二林, 刘海芳,等. 布尔混沌系统的物理随机性分析[J]. 通信学报, 2019, 40(3): 190-195.
GONG Lishuang, HOU Erlin, LIU Haifang, et al. Physical random analysis of Boolean chaos[J]. Journal on Communications, 2019,40(3): 190-195.(in Chinese)
[12] ROSIN D P, RONTANI D, GAUTHIER D J. Emergence of dynamical complexity in autonomous Boolean networks[EB/OL]. arXiv, 2012[2020-01-05]. https://arxiv.org/abs/1209.0142v1.
[13] 张琪琪, 张建国, 李璞,等. 基于布尔混沌的物理随机数发生器[J]. 通信学报, 2019, 40(1): 201-206.
ZHANG Qiqi, ZHANG Jianguo, LI Pu, et al. Boolean-chaos-based physical random number generator[J]. Journal on Communications, 2019, 40(1):201-206.(in Chinese)
[14] GHIL M, MULLHAUPT A. Boolean delay equations II. periodic and aperiodic solutions[J]. Journal of Statistical Physics, 1985, 41(1/2):125-173.
[15] CHENG X, SUN M, SOCOLAR J E S. Autonomous Boolean modelling of developmental gene regulatory networks[J]. Journal of the Royal Society Interface, 2012, 10(78): 20120574.
[16] GLASS L, HILL C. Ordered and disordered dynamics in random networks[J]. EPL, 2007, 41(6): 599-604.
[17] EDWARDS R, GLASS L. Combinatorial explosion in model gene networks[J]. Chaos, 2000, 10(3): 691-704.
[18] MESTL T, BAGLEY R J, GLASS L. Common chaos in arbitrarily complex feedback networks[J]. Physical Review Letters, 1997, 79(4): 653-656.
[19] ZHANG R, HL D S C, GAO Z, et al. Boolean chaos[J]. Physical Review E, 2009, 80(2): 045202.
[20] IMMOREEV I, TAO T H. UWB radar for patient monitoring[J]. IEEE Aerospace & Electronic Systems Magazine, 2008, 23(11):11-18.
[21] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102.
[22] AIS 31. Functionality classes and evaluation methodology for true (physical) random number generators[S].
[23] KLOEDEN P E, PEARSON R A. The numerical solution of stochastic differential equations[J]. The ANZIAM Journal, 1977, 20(1): 8-12.
[24] GAO J B, HU J,TUNG W W, et al. Distinguishing chaos from noise by scale-dependent Lyapunov exponent[J]. Physical Review E, 2006, 74(6): 066204.
[25] ROSENSTEIN M T, COLLINS J J, LUCA C J D. A practical method for calculating largest Lyapunov exponents from small data set[J]. Physica D: Nonlinear Phenomena, 1993, 65(1/2): 117-134.
[26] BUCCI M, GERMANI L, LUZZI R, et al. A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC[J]. IEEE Transactions on Computers, 2003, 52(4):403-409.
[27] KINNIMENT D J, CHESTER E G. Design of an on-chip random number generator using metastability[C]// Proceedings of the 28th European Solid-State Circuits Conference. Florence, Italy: IEEE, 2002: 595-598.
[28] PARESCHI F, SETTI G, ROVATTI R. Implementation and testing of high-speed CMOS true random number generators based on chaotic systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(12):3124-3137.


 LUO Song-jiang,QIU Shui-sheng,and CHEN Xu.Spatiotemporal chaotic pseudorandom number generator based on coupled sawtooth map[J].Journal of Shenzhen University Science and Engineering,2012,29(1):335.[doi:10.3724/SP.J.1249.2012.04335]
 Luo Wenguang,Yu Yingyuan,Xie Guangming,et al.Chaotic behavior analysis for a type of switched systems and its chaotic control[J].Journal of Shenzhen University Science and Engineering,2013,30(1):235.[doi:10.3724/SP.J.1249.2013.03235]
[3]冯俊秋 李 挥.人工神经网络在股票市场预测中的应用[J].深圳大学学报理工版,1998,15(2-3):68.
 Feng Junqiu and Li Hui.Application of Artificial Neural Network to Chinese Stock Market Forecast[J].Journal of Shenzhen University Science and Engineering,1998,15(1):68.
 WANG Zhe,ZHAO Yi,HAO Qiaoyan,et al.Layer number identification of graphene and InSe by optical contrast[J].Journal of Shenzhen University Science and Engineering,2019,36(1):382.[doi:10.3724/SP.J.1249.2019.04382]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(1):51.[doi:10.3724/SP.J.1249.2020.01051]


Foundation:National Natural Science Foundation of China (61671316);Natural Science Foundation of Shanxi Province (201801D121145)
Corresponding author:Associate professor ZHANG Jianguo. E-mail: zhangjianguo@tyut.edu.cn
Citation:DU Haijun, ZHANG Jianguo, LIU Haifang, et al. Autonomous Boolean network and physical random number generator based on XOR gate[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 103-109.(in Chinese)
引文:杜海鋆,张建国,刘海芳,等.异或门自治布尔网络及物理随机数发生器[J]. 深圳大学学报理工版,2021,38(1):103-109.
更新日期/Last Update: 2021-01-26