[1]王武亮,江辉.基于多任务贝叶斯压缩感知的电能质量信号重构[J].深圳大学学报理工版,2021,38(1):77-84.[doi:10.3724/SP.J.1249.2021.01077]
 WANG Wuliang and JIANG Hui.Power quality signal reconstruction based on multitask Bayesian compressive sensing[J].Journal of Shenzhen University Science and Engineering,2021,38(1):77-84.[doi:10.3724/SP.J.1249.2021.01077]
点击复制

基于多任务贝叶斯压缩感知的电能质量信号重构()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第1期
页码:
77-84
栏目:
电子与信息科学
出版日期:
2021-01-12

文章信息/Info

Title:
Power quality signal reconstruction based on multitask Bayesian compressive sensing
文章编号:
202101010
作者:
王武亮江辉
深圳大学物理与光电工程学院,广东深圳 518060
Author(s):
WANG Wuliang and JIANG Hui
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
信息处理技术压缩感知电能质量多任务贝叶斯信号重构
Keywords:
information processing technology compressive sensing power quality multitask Bayesian signal reconstruction
分类号:
TM711;TM93
DOI:
10.3724/SP.J.1249.2021.01077
文献标志码:
A
摘要:
压缩感知技术突破奈奎斯特采样定理限制,能够有效降低数据的存储和传输成本,只需较少的样本就能对电能质量信号进行重构,对电能质量的检测分析具有重要意义.针对电能质量信号,提出一种基于多任务贝叶斯压缩感知理论的电能质量信号压缩重构算法,该算法选择快速傅里叶变换基作为稀疏基对电能质量信号进行稀疏处理,将所得稀疏向量的实部和虚部构成两个压缩重构任务;利用超参数估计的共享机制,考虑两个任务间数据的内在相关性,对电能质量信号进行重构.仿真结果表明,该算法在压缩重构含复杂扰动的电能质量信号时,其抗噪性能和重构精度均优于正交匹配追踪算法和贝叶斯压缩感知算法,更加适用于含有复杂扰动的电能质量信号的压缩重构.
Abstract:
Compressed sensing technology breaks through the limitation of Nyquist sampling theorem, and can effectively reduce the cost of data storage and transmission. Only a few samples are needed to reconstruct the power quality signal by using the compressed sensing technology, which is of great significance for the detection and analysis of power quality. We propose an algorithm based on multitask Bayesian compressed sensing (MT-BCS) theory for power quality signals compression and reconstruction in this paper. The power quality signals are changed to sparse vectors by taking the fast Fourier transform basis as the sparse basis. The real and imaginary parts of sparse vectors are then treated as two compression and reconstruction tasks. Considering the internal correlation of data corresponding to these two tasks, the power quality signal is reconstructed using the sharing mechanism of hyperparameter estimation. The simulation results show that the algorithm is superior to the orthogonal matching pursuit algorithm and the Bayesian compressed sensing algorithm in anti-noise performance and reconstruction accuracy, and is more suitable for compressing and reconstructing power quality signals with complex disturbance.

参考文献/References:

[1] CANDS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
[2] CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
[3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[4] WANG Xu, TIAN Lijun, GAO Yunxing, et al. Analysis of power quality disturbance signal based on improved compressed sensing reconstruction algorithm[C]// IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Harbin, China: IEEE, 2017: 1-5.
[5] 童新,卿朝进,夏凌,等.基于稀疏度特征的短时电能质量扰动信号重构方法[J].电测与仪表,2018,55(20):114-121.
TONG Xin,QING Chaojin, XIA Ling,et al.Sparsity-feature based reconstruction method for short-time power quality disturbance signals[J]. Electrical Measurement & Instrumentation,2018,55(20):114-121.(in Chinese)
[6] 刘国海,丁灵卫,沈跃, 等.广义正交匹配追踪电能质量信号重构方法[J].电测与仪表,2019,56(10):69-74.
LIU Guohai, DING Lingwei,SHEN Yue, et al. Power quality signal reconstruction method based on generalized orthogonal matching pursuit[J]. Electrical Measurement & Instrumentation,2019,56(10):69-74.(in Chinese)
[7] 刘嫣,汤伟,刘宝泉.基于压缩感知的电能质量扰动数据稀疏分析与改进重构算法[J].电工技术学报,2018(1):3461-3470.
LIU Yan, TANG Wei, LIU Baoquan. Data sparse analysis and improved reconstruction algorithm of power quality disturbance based on compressed sensing[J].Transactions of China Electrotechnical Society, 2018(1): 3461-3470.(in Chinese)
[8] 张锐, 吴庭宇. 基于压缩感知的电能质量压缩采样重构算法[J]. 数据采集与处理, 2019, 34(2):214-222.
ZHANG Rui,WU Tingyu.Power quality compressed sampling reconstruction algorithm based on compressed sensing[J].Journal of Data Acquisition & Processing,2019,34(2):214-222.(in Chinese)
[9] BISHOP C M, TIPPING M E. Variational relevance vector machines[C]// Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence. San Francisco, USA:[s. n.], 2000: 46-53.
[10] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
[11] WIPF D P, RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164.
[12] JI Shihao, XUE Ya, CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356.
[13] JI Shihao, DUNSON D, CARIN L. Multitask compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 92-106.
[14] CANDS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus: Mathématique, 2008, 346(9/10): 589-592.

相似文献/References:

[1]黄建军,李鹏飞,喻建平,等.基于类云模型聚类的多目标数据关联算法[J].深圳大学学报理工版,2010,27(1):11.
 HUANG Jian-jun,LI Peng-fei,YU Jian-ping,et al.Multitarget data association algorithm using cluster cloud model based c-means clustering[J].Journal of Shenzhen University Science and Engineering,2010,27(1):11.
[2]袁天然,廖文和,程筱胜,等.牙龈软组织变形仿真技术研究[J].深圳大学学报理工版,2010,27(1):21.
 YUAN Tian-ran,LIAO Wen-he,CHENG Xiao-sheng,et al.Research on gum tissue deformation simulation techniques[J].Journal of Shenzhen University Science and Engineering,2010,27(1):21.
[3]王品,谢维信,刘宗香,等.几种面向弹道目标跟踪算法的性能评估[J].深圳大学学报理工版,2012,29(No.5(377-470)):392.[doi:10.3724/SP.J.1249.2012.05392]
 WANG Pin,XIE Wei-xin,LIU Zong-xiang,et al.Performance evaluation of several methods for tracking a ballistic object[J].Journal of Shenzhen University Science and Engineering,2012,29(1):392.[doi:10.3724/SP.J.1249.2012.05392]
[4]范恩,谢维信,刘宗香.基于子航迹Hough变换的模糊航迹关联[J].深圳大学学报理工版,2013,30(No.6(551-660)):551.[doi:10.3724/SP.J.1249.2013.06551]
 Fan En,Xie Weixin,and Liu Zongxiang.Fuzzy track association using tracklet-based Hough transform[J].Journal of Shenzhen University Science and Engineering,2013,30(1):551.[doi:10.3724/SP.J.1249.2013.06551]
[5]詹从来,龙伟,丁远超,等.基于FPGA的多路数据采集与处理系统设计[J].深圳大学学报理工版,2016,33(2):127.[doi:10.3724/SP.J.1249.2016.02127]
 Zhan Conglai,Long Wei,Ding Yuanchao,et al.Design of multi channel data collection and processing system based on FPGA[J].Journal of Shenzhen University Science and Engineering,2016,33(1):127.[doi:10.3724/SP.J.1249.2016.02127]
[6]张明辉,肖凯,卢红阳,等.基于加权双层Bregman及图结构正则化的磁共振成像[J].深圳大学学报理工版,2016,33(2):119.[doi:10.3724/SP.J.1249.2016.02119]
 Zhang Minghui,Xiao Kai,Lu Hongyang,et al.Weighted two-level Bregman method with graph regularized sparse coding for MRI reconstruction[J].Journal of Shenzhen University Science and Engineering,2016,33(1):119.[doi:10.3724/SP.J.1249.2016.02119]
[7]李东,郭浩铭,田劲东,等.改进的DataMatrix码L形边精确定位方法[J].深圳大学学报理工版,2018,35(2):151.[doi:10.3724/SP.J.1249.2018.02151]
 LI Dong,GUO Haoming,TIAN Jindong,et al.An improved method of locating L-edges in DataMatrix codes[J].Journal of Shenzhen University Science and Engineering,2018,35(1):151.[doi:10.3724/SP.J.1249.2018.02151]
[8]李钢,郑鑫博,阳召成.一种基于多级自适应门限的计步算法[J].深圳大学学报理工版,2018,35(2):158.[doi:10.3724/SP.J.1249.2018.02158]
 LI Gang,ZHENG Xinbo,and YANG Zhaocheng.Pedometer method based on adaptive multilevel thresholding[J].Journal of Shenzhen University Science and Engineering,2018,35(1):158.[doi:10.3724/SP.J.1249.2018.02158]
[9]王 秋 霞.基于MCS D2P的动力锂电池管理系统主控软件[J].深圳大学学报理工版,2018,35(5):502.[doi:10.3724/SP.J.1249.2018.05502]
 WANG Qiuxia.The battery management system master control software for power lithium battery based on the MCS D2P development platform[J].Journal of Shenzhen University Science and Engineering,2018,35(1):502.[doi:10.3724/SP.J.1249.2018.05502]
[10]李正茂,陈大庆,刘马良.无人机SAR数据低比特量化及其复杂度分析[J].深圳大学学报理工版,2019,36(5):503.[doi:10.3724/SP.J.1249.2019.05503]
 LI Zhengmao,CHEN Daqing,and LIU Maliang.Low-bit quantization for UAV SAR data and its complexity analysis[J].Journal of Shenzhen University Science and Engineering,2019,36(1):503.[doi:10.3724/SP.J.1249.2019.05503]
[11]徐静,王彩云.压缩感知测量矩阵优化混合方法[J].深圳大学学报理工版,2014,31(1):58.[doi:10.3724/SP.J.1249.2014.01058]
 Xu Jing and Wang Caiyun.A hybrid optimization method for measurement matrix in compressed sensing[J].Journal of Shenzhen University Science and Engineering,2014,31(1):58.[doi:10.3724/SP.J.1249.2014.01058]

备注/Memo

备注/Memo:
Received:2020-06-02;Accepted:2020-06-28
Foundation:National Natural Sicence Foundation of China (51707123); Shenzhen Basic Research Foundation (JCYJ201908081652 01648)
Corresponding author:Professor JIANG Hui. E-mail: huijiang@szu.edu.cn
Citation:WANG Wuliang, JIANG Hui. Power quality signal reconstruction based on multitask Bayesian compressive sensing[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 77-84.(in Chinese)
基金项目:国家自然科学基金资助项目(51707123);深圳市基础研究计划资助项目(JCYJ20190808165201648)
作者简介:王武亮(1995—),深圳大学硕士研究生.研究方向:智能信息处理.E-mail:szu_wwl@163.com
引文:王武亮,江辉.基于多任务贝叶斯压缩感知的电能质量信号重构[J]. 深圳大学学报理工版,2021,38(1):77-84.
更新日期/Last Update: 2021-01-26