[1]洪凯东,张晓,祝雷,等.高阶模高增益贴片天线的分析与设计综述[J].深圳大学学报理工版,2021,38(1):69-76.[doi:10.3724/SP.J.1249.2021.01069]
 HONG Kaidong,ZHANG Xiao,ZHU Lei,et al.A review on analysis and design of high-gain patch antenna under high-order-mode operation[J].Journal of Shenzhen University Science and Engineering,2021,38(1):69-76.[doi:10.3724/SP.J.1249.2021.01069]
点击复制

高阶模高增益贴片天线的分析与设计综述()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第1期
页码:
69-76
栏目:
电子与信息科学
出版日期:
2021-01-12

文章信息/Info

Title:
A review on analysis and design of high-gain patch antenna under high-order-mode operation
文章编号:
202101009
作者:
洪凯东1张晓1祝雷2陈哲1袁涛1
1)深圳大学电子与信息工程学院,广东省移动终端微波毫米波工程技术研究中心,ATR国防科技重点实验室,广东深圳 518060
2)澳门大学科技学院,澳门 999078
Author(s):
HONG Kaidong1 ZHANG Xiao1 ZHU Lei2 CHEN Zhe1 and YUAN Tao1
1) College of Electronics and Information Engineering, Guangdong Provincial Mobile Terminal Microwave and Millimeter-Wave Antenna Engineering Research Center, ATR National Key Laboratory of Defense Technology, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
2) Faculty of Science and Technology, University of Macau, Macau 999078, P.R.China
关键词:
天线电波传播 高阶模 高增益贴片天线 副瓣抑制 阻抗带宽 双频贴片天线 宽带贴片天线
Keywords:
antenna and propagation high-order-mode high-gain patch antenna sidelobe suppression impedance bandwidth dual-band patch antenna wideband patch antenna
分类号:
TN823
DOI:
10.3724/SP.J.1249.2021.01069
文献标志码:
A
摘要:
与基模贴片天线相比,高阶模贴片天线天然具有更大的电尺寸,故有利于实现高增益辐射.然而,高阶模贴片天线也存在副瓣高和带宽窄等缺陷.本文分析了采用高介电常数基板、寄生辐射抵消和缝隙加载3种主要的抑制高阶模贴片天线副瓣方法;针对高阶模贴片天线的阻抗带宽特性,评述近年来国内外关于双频和宽带高阶模贴片天线的主要研究成果;介绍多模谐振技术及滤波天线设计方法对改善高阶模贴片天线带宽的作用,指出未来高阶模贴片天线设计仍然面临阻抗带宽窄和天线邻模抑制问题.
Abstract:
Compared with the fundamental-mode patch antennas, high-order-mode patch antennas inherently possess much larger radiating size, so they are good candidates for high-gain radiation. However, these antennas usually suffer from several drawbacks, such as high sidelobe level, narrow bandwidth and so on. This paper analyzes three reported techniques for sidelobe suppression of the high-order-mode patch antennas, such as high dielectric constant substrate, filed superposition from parasitic patch, and slot loading on patch. As for bandwidth enhancement, dual-band and wideband high-order-mode patch antennas proposed in recent years are reviewed in detail, and it is demonstrated that the multi-mode technique and filtering antenna theory are effective for wideband design. Finally, the design challenges for future high-order-mode patch antennas in terms of narrow impedance bandwidth and antenna adjacent mode suppression are discussed.

参考文献/References:

[1] 钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社,1991:152-172.
ZHONG Shunshi. Microstrip antenna theory and application[M]. Xi’an: Xidian University Press, 1991: 152-172.(in Chinese)
[2] EGASHIRA S, NISHIYAMA E. Stacked microstrip antenna with wide bandwidth and high gain[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(11): 1533-1534.
[3] ENTSCHLADEN H, NAGEL U. Microstrip patch array antenna[J]. Electronics Letter, 1984, 20(22): 931-933.
[4] TRENTINI G V. Partially reflecting sheet arrays[J]. IEEE Transactions on Antennas and Propagation, 1956, 4(4): 666-671.
[5] JACKSON D, ALEXOPOULOS N. Gain enhancement methods for printed circuit antennas[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(9): 976-987.
[6] SCHAUBERT D, FARRAR F, SINDORIS A, et al. Microstrip antennas with frequency agility and polarization diversity[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(1): 118-123.
[7] ZHANG Xiao, ZHU Lei. Gain-enhanced patch antennas with loading of shorting pins[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3310-3318.
[8] JUYAL P, SHAFAI L. A novel high-gain printed antenna configuration based on TM12 mode of circular disc[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(2): 790-796.
[9] LUO Yu, CHEN Zhining. Compressed dipoles resonating at higher order modes with enhanced directivity[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5697-5701.
[10] JUYAL P, SHAFAI L. A high-gain single-feed dual-mode microstrip disc radiator[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2115-2126.
[11] JUYAL P, SHAFAI L. Sidelobe reduction of TM12 mode of circular patch via nonresonant narrow slot[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3361-3369.
[12] ZHANG Xiao, ZHU Lei, WU Qiongsen. Sidelobe-reduced and gain-enhanced square patch antennas with adjustable beamwidth under TM03 mode operation[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1704-1713.
[13] HONG Kaidong, ZHANG Xiao, ZHU Lei, et al. Slot loading effect on impedance and radiation performance of high-gain patch antenna under TM03-mode operation[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(12): e21967.
[14] HONG Kaidong, ZHANG Cong, ZHANG Xiao, et al. Slot loading effect on the impedance and radiation performance of the TM03-mode high-gain square patch antenna[C]// IEEE MTT-S International Microwave Biomedical Conference. Nanjing, China:IEEE, 2019: 1-4.
[15] HE Yijing, LI Yue, SUN Wangyu, et al. Dual linearly polarized microstrip antenna using a slot-loaded TM50 mode[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2344-2348.
[16] AHMED Z, AHMED M M. Sidelobe reduction and gain enhancement in higher order TM30 and TM70 mode rectangular patch antennas via partial notch loading[J]. IET Microwaves, Antennas & Propagation, 2019, 13(12): 1955-1962.
[17] JUYAL P, ADIBELLI S, SEHATBAKHSH N, et al. A directive antenna based on conducting discs for detecting unintentional EM emissions at large distances[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 6751-6761.
[18] YANG K P, WONG K L. Dual-band circularly-polarized square microstrip antenna[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(3): 377-382.
[19] ZHANG Jindong, ZHU Lei, LIU Nengwu, et al. Dual-band and dual-circularly polarized single-layer microstrip array based on multiresonant modes[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1428-1433.
[20] ZHANG Xiao, ZHU Lei. Dual-band high-gain differentially fed circular patch antenna working in TM11 and TM12 modes[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 3160-3165.
[21] HONG Kaidong, ZHANG Xiao, HUANG Guanlong, et al. A differential-fed rectangular microstrip patch antenna with dual-band high gain under operation of TM01 and TM03 modes[C]// International Conference on Microwave and Millimeter Wave Technology (ICMMT). Guangzhou, China:[s.n.], 2019: 1-3.
[22] LIU Nengwu, ZHU Lei, CHOI W W. A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10 and TM30 modes[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1607-1614.
[23] NGUYEN-TRONG N, TA X S, IKRAM M, et al. A low-profile wideband tripolarized antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1946-1951.
[24] LU Wenjun, LI Qing, WANG Shengguang, et al. Design approach to a novel dual-mode wideband circular sector patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10): 4980-4990.
[25] LIU Qianwen, ZHU Lei, WANG Jianpeng, et al. Wideband low-profile differential-fed patch antennas with an embedded SIW cavity under dual-mode resonance[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 4235-4240.
[26] KLIONOVSKI K, SHAMIM A. Physically connected stacked patch antenna design with 100% bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3208-3211.
[27] HONG Kaidong, ZHANG Xiao, ZHU Lei, et al. A self-balanced wideband patch antenna fed with a U-resonator for stable radiation performance[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 661-665.
[28] SQUADRITO P, ZHANG Shuai, PEDERSEN G F. Wideband or dual-band low-profile circular patch antenna with high-gain and sidelobe suppression[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 3166-3171.
[29] LUO Yu, CHEN Zhining, MA Kaixue. A single-layer dual-polarized differentially-fed patch antenna with enhanced gain and bandwidth operating at dual compressed high-order modes using characteristic mode analysis[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 4082-4087.
[30] WEN Juan, XIE Danpeng, ZHU Lei. Bandwidth-enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 1976-1980.
[31] ZHANG Xiao, WU Qiongsen, ZHU Lei, et al. Resonator-fed wideband and high-gain patch antenna with enhanced selectivity and reduced cross-polarization[J]. IEEE Access, 2019, 7: 49918-49927.
[32] MAO Chunxu, GAO S, WANG Yi. Broadband high-gain beam-scanning antenna array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4864-4868.
[33] MAO Chunxu, GAO S, WANG Yi, et al. Filtering antenna with two-octave harmonic suppression[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1361-1364.
[34] YANG Wanchen, ZHANG Yingqi, CHE Wenquan, et al. A simple, compact filtering patch antenna based on mode analysis with wide out-of-band suppression[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6244-6253.
[35] WU Qiongsen, ZHANG Xiao, ZHU Lei. Co-design of a wideband circularly polarized filtering patch antenna with three minima in axial ratio response[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5022-5030.
[36] XIANG B J, ZHENG S Y, PAN Y M, et al. Wideband circularly polarized dielectric resonator antenna with bandpass filtering and wide harmonics suppression response[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 2096-2101.

备注/Memo

备注/Memo:
Received:2020-03-26;Accepted:2020-06-10;Online:2020-10-07
Foundation:National Natural Science Foundation of China (61801298); National Key R & D Program of China (2019YFF0216 602); Shenzhen Basic Research Foundation (JCYJ20180305124721920, JCYJ20190808115411853)
Corresponding author:Professor YUAN Tao. E-mail: yuantao@szu.edu.cn
Citation:HONG Kaidong, ZHANG Xiao, ZHU Lei, et al. A review on analysis and design of high-gain patch antenna under high-order-mode operation[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 69-76.(in Chinese)
基金项目:国家自然科学基金资助项目 (61801298);国家重点研发计划资助项目 (2019YFF0216602);深圳市基础研究计划资助项目 (JCYJ20180305124721920, JCYJ20190808 115411853);深圳市海外高层次人才创新创业计划资助项目(KQTD20180412181337494);深圳大学自然科学基金资助项目 (2019118)
作者简介:洪凯东(1993—),深圳大学博士研究生.研究方向:高阶模贴片天线.E-mail:kd.hong@foxmail.com
引文:洪凯东,张晓,祝雷,等.高阶模高增益贴片天线的分析与设计综述[J]. 深圳大学学报理工版,2021,38(1):69-76.
更新日期/Last Update: 2021-01-26