[1]房娜仁,胡士清,王选仓,等.施工期水泥稳定碎石底基层的疲劳损伤分析[J].深圳大学学报理工版,2021,38(1):61-68.[doi:10.3724/SP.J.1249.2021.01061]
 FANG Naren,HU Shiqing,et al.Fatigue damage analysis of cement stabilized sub-base during construction period[J].Journal of Shenzhen University Science and Engineering,2021,38(1):61-68.[doi:10.3724/SP.J.1249.2021.01061]
点击复制

施工期水泥稳定碎石底基层的疲劳损伤分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第1期
页码:
61-68
栏目:
土木建筑工程
出版日期:
2021-01-12

文章信息/Info

Title:
Fatigue damage analysis of cement stabilized sub-base during construction period
文章编号:
202101008
作者:
房娜仁12胡士清2王选仓2李琪琪2辛磊2
1)天津城建大学土木工程学院,天津 300384
2)长安大学公路学院,陕西西安 710064
Author(s):
FANG Naren1 2 HU Shiqing2 WANG Xuancang2 LI Qiqi2 and XIN Lei2
1) School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P.R.China
2) School of Highway, Chang’an University, Xi’an 710064, Shaanxi Province, P.R.China
关键词:
道路工程疲劳损伤分析疲劳方程Miner理论水泥稳定碎石底基层
Keywords:
road engineering fatigue damage analysis fatigue equation Miner theory cement stabilized gravel sub-base
分类号:
U416.2
DOI:
10.3724/SP.J.1249.2021.01061
文献标志码:
A
摘要:
水泥稳定碎石材料用做路面基层及底基层时,由于施工期养生龄期不足和车辆荷载超载,会造成不可逆疲劳损伤.为得到施工荷载对水泥稳定碎石底基层造成的疲劳损伤,基于Miner理论和ABAQUS软件,进行弯拉强度试验和疲劳试验,分析了9种车辆荷载下,底基层厚度分别为16、20、24、28和32 cm时,最大层底拉应力与底基层厚度的关系,以及底基层模量分别为400、800、1 200、1 600 和2 000 MPa时,最大层底拉应力与底基层模量的关系. 研究结果表明,随着底基层厚度的增加,底基层层底拉应力不断减小,减小率最大为8.8%;随着底基层模量的增加,底基层层底拉应力不断增大,但增长率不断降低. 依托实际工程,可得到水泥稳定碎石底基层疲劳预估方程,基于Miner理论计算得到不同工况下,不同施工荷载对底基层造成的疲劳损伤程度,为路面设计和施工提供指导.
Abstract:
When cement stabilized gravel materials are used as pavement base and sub-base, irreversible fatigue damage often occurs due to insufficient maintenance days during the construction period and overload of vehicle load. In order to obtain the fatigue damage caused by the construction load on the cement stabilized gravel sub-base, the flexural tensile strength test and the fatigue test are carried out based on Miner theory and ABAQUS software. Under 9 kinds of vehicle load, we analyze both the relationship between the maximum tensile stress of the sub-base layer and the substrate thickness when the substrate thickness is 16, 20, 24, 28, and 32 cm and the relationship between the maximum tensile stress of the sub-base layer and the modulus of the sub-base when the modulus of the subbase is 400, 800, 1 200, 1 600, and 2 000 MPa, respectively. The research results show that with the increase of the thickness of the sub-base layer, the tensile stress of the sub-base decreases gradually, and the maximum reduction rate is 8.8%. With the growth of the sub-base modulus, the bottom tensile stress of the sub-base layer increases gradually, but the growth rate continues to decrease. Relying on the actual engineering project, the fatigue prediction equation of the cement stabilized gravel sub-base can be obtained by using Miner theory to calculate the fatigue damage degree of the subbase caused by different construction loads under different working conditions, which provides guidance for the design and construction of the pavement.

参考文献/References:

[1] MARANDI S M, SAFAPOUR P. Base course modification through stabilization using cement and bitumen[J]. American Journal of Applied Sciences, 2009, 6(1):30-42.
[2] LI Qiang, WANG Zhibing, LI Yuliang, et al. Cold recycling of lime-fly ash stabilized macadam mixtures as pavement bases and subbases[J]. Construction and Building Materials, 2018, 169(30):306-314.
[3] YE Hongyu, WANG Xuancang, FANG Naren, et al. Low-temperature performance and evaluation index of gussasphalt for steel bridge decks[J]. Advances in Materials Science and Engineering, 2019(2):1-11.
[4] 王艳,倪富健,李再新. 水泥稳定碎石基层温缩性能试验及预估控制[J]. 东南大学学报自然科学版,2008,38(2):260-264.
WANG Yan, NI Fujian, LI Zaixin. Experiment and prediction control of temperature shrinkage performance of cement stabilized crushed stone base[J]. Journal of Southeast University Natural Science, 2008, 38(2): 260-264.(in Chinese)
[5] 周辉勇. 水泥稳定碎石基层路用性能及施工技术研究[J]. 工程建设与设计,2017(10):74-75.
ZHOU Huiyong. Research on road performance and construction technology of cement stabilized crushed stone base[J]. Engineering Construction and Design, 2017(10): 74-75.(in Chinese)
[6] 曹强. 水泥稳定碎石基层施工期结构损伤分析及其处治措施研究[D]. 长沙:长沙理工大学,2015.
CAO Qiang. Structural damage analysis and treatment measures of cement stabilized macadam base during construction[D]. Changsha: Changsha University of Science and Technology, 2015.(in Chinese)
[7] 张丽宏,廖福星,刘巨伟. 水泥稳定碎石基层裂缝的控制[J]. 筑路机械与施工机械化,2010,27(7):60-63.
ZHANG Lihong, LIAO Fuxing, LIU Juwei. Control of cracks in cement stabilized gravel base[J]. Road Construction Machinery and Construction Mechanization, 2010, 27(7): 60-63.(in Chinese)
[8] YOON S, ABU-FARSAKH M. Laboratory investigation on the strength characteristics of cement-sand as base material[J]. Ksce Journal of Civil Engineering, 2009, 13(1): 15-22.
[9] LI Wei, LANG Lei, LIN Zhenyue, et al. Characteristics of dry shrinkage and temperature shrinkage of cement-stabilized steel slag[J]. Construction and Building Materials, 2017, 134(3):540-548.
[10] 吕松涛,陈杰东,张晖. 水泥稳定碎石拉压弯静态模量与动态模量比较分析[J]. 公路交通科技,2016,33(10):39-43,59.
LV Songtao, CHEN Jiedong, ZHANG Hui. Comparative analysis of static and dynamic modulus of tension and compression of cement stabilized crushed stone[J]. Highway Transportation Science and Technology, 2016, 33(10):39-43,59.(in Chinese)
[11] 张敏江,方竹胜,刘洪涛,等. 水泥稳定级配碎石基层材料路用性能及超轴载下疲劳寿命研究[J]. 沈阳建筑大学学报自然科学版,2016,32(6):1075-1082.
ZHANG Minjiang, FANG Zhusheng, LIU Hongtao, et al. Study on road performance and fatigue life under super axial load of cement stabilized graded crushed stone base material[J]. Journal of Shenyang Jianzhu University Natural Science, 2016, 32(6): 1075-1082.(in Chinese)
[12] 孟岩,郭林泉,谈至明. 路面载重车辆的荷载特征[J]. 公路交通科技,2007,24(4):1-6.
MENG Yan, GUO Linquan, TAN Zhiming. Load characteristics of road load vehicles[J]. Highway Transportation Technology, 2007, 24(4):1-6.(in Chinese)
[13] 陈飞,马融. 基于两阶段水泥稳定碎石基层寿命预估研究[J]. 公路,2016,61(5):174-177.
CHEN Fei, MA Rong. Research on life prediction of cement stabilized crushed stone base course based on two stages[J]. Highway, 2016, 61(5): 174-177.(in Chinese)
[14] 何锐. 基于实测轴载谱的沥青路面轴载换算与设计参数研究[D]. 西安:长安大学,2010.
HE Rui. Research on axle load conversion and design parameters of asphalt pavement based on measured axle load spectrum[D]. Xi’an:Changan University, 2010.(in Chinese)
[15] HADI M, RUI F, GUANG Y, et al. Microstructure-based prediction of the elastic behaviour of hydrating cement pastes[J]. Applied Sciences-Basel, 2018, 8(3): 442-445.
[16] MA Yinhua, GU Jianyi, LI Ya, et al. The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber[J]. Construction and Building Materials, 2015, 132(3): 230-236.
[17] WANG Xuancang, FANG Naren, YE Hongyu, et al. Fatigue damage analysis of cement-stabilized base under construction loading[J]. Applied Sciences-Basel, 2018, 8(11): 2263-2283.
[18] WANG Xuancang, SU Ziyuan, XU Aimin, et al. Shear fatigue between asphalt pavement layers and its application in design[J]. Construction and Building Materials, 2017, 134(3):297-305.
[19] 郭芳,付宏渊,邵腊庚. 基于环境温度变化的混合式基层沥青路面结构疲劳损伤分析[J]. 中南大学学报自然科学版,2015,46(5):1869-1875.
GUO Fang, FU Hongyuan, SHAO Lageng. Fatigue damage analysis of asphalt pavement structure based on ambient temperature variation[J]. Journal of Central South University Science and Technology, 2015,46(5): 1869-1875.(in Chinese)
[20] 孙志林,贺三春,王辉. 低温荷载下沥青路面非线性疲劳损伤数值模拟[J]. 应用力学学报,2017,34(1):149-154,203.
SUN Zhilin, HE Sanchun, WANG Hui. Numerical simulation of nonlinear fatigue damage of asphalt pavement under low temperature load[J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 149-154,203.(in Chinese)

相似文献/References:

[1]栗振锋,张敏.FWD动载下的横观各向同性路基动力响应分析[J].深圳大学学报理工版,2013,30(No.2(111-220)):195.[doi:10.3724/SP.J.1249.2013.02195]
 Li Zhenfeng and Zhang Min.The analysis of dynamic response of transversely isotropic subgrade based on FWD[J].Journal of Shenzhen University Science and Engineering,2013,30(1):195.[doi:10.3724/SP.J.1249.2013.02195]
[2]胡江洋,毛君,张浩,等.火山渣作为路基填料的试验研究[J].深圳大学学报理工版,2015,32(6):625.[doi:10.3724/SP.J.1249.2015.06625]
 Hu Jiangyang,Mao Jun,et al.Research on test characteristic of cinder as subgrade filling[J].Journal of Shenzhen University Science and Engineering,2015,32(1):625.[doi:10.3724/SP.J.1249.2015.06625]
[3]刘国光,武志玮,牛富俊,等.基于BP神经网络的场道脱空检测方法及实验[J].深圳大学学报理工版,2016,33(3):309.[doi:10.3724/SP.J.1249.2016.03309]
 Liu Guoguang,Wu Zhiwei,Niu Fujun,et al.Airport pavement void testing based on back propagation neural network[J].Journal of Shenzhen University Science and Engineering,2016,33(1):309.[doi:10.3724/SP.J.1249.2016.03309]
[4]胡江洋,陈团结,折学森.路用改性煤沥青毒性消减试验效果分析[J].深圳大学学报理工版,2016,33(4):418.[doi:10.3724/SP.J.1249.2016.04418]
 Hu Jiangyang,Chen Tuanjie,et al.Analysis of toxicity reduction test about modified coal tar used for road[J].Journal of Shenzhen University Science and Engineering,2016,33(1):418.[doi:10.3724/SP.J.1249.2016.04418]
[5]吴朝阳,杨少伟,林岚,等.互通式立交高事故率出口的判定方法[J].深圳大学学报理工版,2016,33(5):536.[doi:10.3724/SP.J.1249.2016.05536]
 Wu Zhaoyang,Yang Shaowei,Lin Lan,et al.Method for identifying the high accident rate exits of interchange[J].Journal of Shenzhen University Science and Engineering,2016,33(1):536.[doi:10.3724/SP.J.1249.2016.05536]
[6]武志玮,刘国光,刘智勇.基于小波变换的场道脱空识别[J].深圳大学学报理工版,2017,34(3):265.[doi:10.3724/SP.J.1249.2017.03265]
 Wu Zhiwei,Liu Guoguang,and Liu Zhiyong,et al.Runway pavement void identification based on wavelet transform[J].Journal of Shenzhen University Science and Engineering,2017,34(1):265.[doi:10.3724/SP.J.1249.2017.03265]
[7]杨俊,李晓峰,相飞飞,等.废弃混凝土用作再生路面的试验研究[J].深圳大学学报理工版,2017,34(3):252.[doi:10.3724/SP.J.1249.2017.03252]
 Yang Jun,Li Xiaofeng,Xiang Feifei,et al.Experimental study on waste concrete as regenerate pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(1):252.[doi:10.3724/SP.J.1249.2017.03252]
[8]柯文豪,陈华鑫,雷宇,等.基于GRNN神经网络的沥青路面裂缝预测方法[J].深圳大学学报理工版,2017,34(4):378.[doi:10.3724/SP.J.1249.2017.04378]
 Ke Wenhao,Chen Huaxin,Lei Yu,et al.Prediction method for asphalt pavement crack based on GRNN neural network[J].Journal of Shenzhen University Science and Engineering,2017,34(1):378.[doi:10.3724/SP.J.1249.2017.04378]
[9]李晶晶,张擎,陈忠达.水泥路面环氧树脂磨耗层的抗滑衰变模型[J].深圳大学学报理工版,2017,34(6):597.[doi:10.3724/SP.J.1249.2017.06597]
 Li Jingjing,Zhang Qing,and Chen Zhongda.Skid resistance decay model of epoxy wear layer on cement pavement[J].Journal of Shenzhen University Science and Engineering,2017,34(1):597.[doi:10.3724/SP.J.1249.2017.06597]
[10]王威娜,李小飞,徐青杰,等.沥青路面二维和三维结构分析模型的比较[J].深圳大学学报理工版,2018,35(1):39.[doi:10.3724/SP.J.1249.2018.01039]
 WANG Weina,LI Xiaofei,XU Qingjie,et al.Comparison of two dimensional and three dimensional modeling methods on the mechanical response of asphalt pavement[J].Journal of Shenzhen University Science and Engineering,2018,35(1):39.[doi:10.3724/SP.J.1249.2018.01039]

备注/Memo

备注/Memo:
Received:2020-02-24;Revised:2020-05-20;Accepted:2020-09-10
Foundation:Key Science and Technology Projects of the Ministry of Transport (2018-MS2-042); Science and Technology Demonstration Projects of the Ministry of Transport (2017-04)
Corresponding author:Professor WANG Xuancang.E-mail: wxc2005@163.com
Citation:FANG Naren, HU Shiqing, WANG Xuancang, et al. Fatigue damage analysis of cement stabilized sub-base during construction period[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 61-68.(in Chinese)
基金项目:交通运输部重点科技资助项目(2018-MS2-042);交通运输部科技示范工程资助项目(2017-04)
作者简介:房娜仁(1992—),天津城建大学讲师.研究方向:路基路面工程.E-mail: 2017021044@chd.edu.cn
引文:房娜仁,胡士清,王选仓,等.施工期水泥稳定碎石底基层的疲劳损伤分析[J]. 深圳大学学报理工版,2021,38(1):61-68.
更新日期/Last Update: 2021-01-26