[1]刘国光,裴磊洋,杨跃敏,等.基于人工神经网络的机场土面区压实度预测[J].深圳大学学报理工版,2021,38(1):54-60.[doi:10.3724/SP.J.1249.2021.01054]
 LIU Guoguang,,et al.Compactness prediction of airport soil field based on artificial neural network[J].Journal of Shenzhen University Science and Engineering,2021,38(1):54-60.[doi:10.3724/SP.J.1249.2021.01054]
点击复制

基于人工神经网络的机场土面区压实度预测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第38卷
期数:
2021年第1期
页码:
54-60
栏目:
土木建筑工程
出版日期:
2021-01-12

文章信息/Info

Title:
Compactness prediction of airport soil field based on artificial neural network
文章编号:
202101007
作者:
刘国光123裴磊洋1杨跃敏1李世男14
1)中国民航大学机场学院,天津 300300
2)中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃兰州 730026
3)中国科学院西北生态环境资源研究院,甘肃兰州 730026
4)成都双流国际机场飞行区管理部,四川成都 610030
Author(s):
LIU Guoguang1 2 3 PEI Leiyang1 YANG Yuemin1 and LI Shinan1 4
1) Airport College, Civil Aviation University of China, Tianjin 300300, P.R.China
2) State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730026, Gansu Province, P.R.China
3) Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730026, Gansu Province, P.R.China
4) Airfield Management Department, Chengdu Shuangliu International Airport, Chengdu 610030, Sichuan Province, P.R.China
关键词:
岩土工程防灾减灾及防护工程道路与铁道工程压实度预测模型人工神经网络机场土面区
Keywords:
geotechnical engineering mitigation and protection engineering highway and railway engineering compactness prediction model artificial neural network airport soil field
分类号:
P642.11+4
DOI:
10.3724/SP.J.1249.2021.01054
文献标志码:
A
摘要:
为提高机场土面区安全动态预测及保障能力,结合某机场为期6 a的土面区安全评估数据,建立基于人工神经网络(artificial neural network, ANN)的压实度预测模型.选取天然密度(natural density, ND)、实测含水率(actual water content, AW)、最优含水率(optimal water content, OW)、降水状况(rainfall condition, RC)和压实状况(compaction condition, CC)作为输入向量,以双曲正切S型传输函数作为传递函数,利用400组实测数据完成模型训练后,用随机抽取的100组测试数据对模型进行精确校验,通过纳什效率系数(Nash-Sutcliffe efficiency coefficient, NSE)分析ANN模型的预测能力,并进行工程应用验证.结果表明,充分训练后ANN模型的均方差为0.98,NSE计算值为0.89,可有效预测土面区压实度.机场对比试验结果表明,大部分测区预测误差在±5%之内,仅有1个样本误差为15%,NSE计算值为0.86,达到了工程应用精度.采用影响因素分析法优化ANN模型发现,ND和AW是影响压实度最重要的因素,管理部门可通过严格控制回填土级配和加强排水措施有效改善土面区安全性.
Abstract:
In order to improve the dynamic prediction and management capabilities of soil field safety in airfield, a new artificial neural network (ANN) model was established based on the evaluation data of six years in an airport.By factors analysis of the actual soil field of the airport, natural density (ND), actual water content (AW), optimal water content (OW), rainfall condition (RC) and compaction condition (CC) were chosen as the input data, and hyperbolic tangent sigmoid function was set as the transfer function.The network was trained by 400 sets of data and validated for its accuracy by 100 sets of data selected randomly from the database.The prediction capability of achieved ANN model was analyzed by Nash-Sutcliffe efficiency coefficient (NSE) method.And engineering application had been done in another airport.The results show that soil field compactness can be effectively predicted by well-trained ANN model with R-Squared of 0.98 and NSE of 0.89.The outcomes of validation test in another airport prove that the errors of most sample zones are between -5% and 5%, with only one exception of 15%, with calculated NSE of 0.86, which satisfies the requirements of engineering application.By optimization of ANN model with factor analysis method, it indicates that ND and AW are the controlling factors of model compactness prediction, and the best ways of improving the safety of soil field in airport are soil gradation and drainage control strictly.

参考文献/References:

[1] 霍志勤.中国民航运输航空器偏/冲出跑道统计分析[J].中国安全生产科学技术,2012,8(7):127-132.
HUO Zhiqin.Statistical analysis on runway excursion of transport aircraft in China[J].Journal of Safety Science and Technology,2012,8(7):127-132.(in Chinese)
[2] 刘国光,杨跃敏,牛富俊,等.春融作用对寒区机场土面区工作性能的影响[J].深圳大学学报理工版,2019,36(6):621-627.

LIU Guoguang,YANG Yuemin,NIU Fujun,et al.Influences of spring thaw on working performance of airport soil field surface in cold region[J].Journal of Shenzhen University Science and Engineering,2019,36(6):621-627.(in Chinese)
[3] CCAR—140—R1 民用机场运行安全管理规定[S].
CCAR—140—R1 Provisions on operation safety management of civil airports[S].(in Chinese)
[4] CANILLAS E C,SALOKHE V M.Regression analysis of some factors influencing soil compaction[J].Soil & Tillage Research,2001,61(3/4):167-178.
[5] PENG X H,HORN R,ZHANG B,et al.Mechanisms of soil vulnerability to compaction of homogenized and recompacted Ultisols[J].Soil & Tillage Research,2003,76(2):125-137.
[6] BARIK K,AKSAKAL E L,Islam K R,et al.Spatial variability in soil compaction properties associated with field traffic operations[J].Catena,2014,120:122-133.
[7] KOIKE M,KAJI T,USABORISUT P,et al.Several contributions to soil compactibility induced by cyclic loading test[J].Journal of Terramechanics,2002,39(3):127-141.
[8] AL-BADRAN Y,SCHANZ T.Modelling the compaction curve of fine-grained soils[J].Soils and Foundations,2014,54(3):426-438.
[9] ALAOUI A,DISERENS E.Mapping soil compaction: a review[J].Current Opinion in Environmental Science & Health,2018,5:60-66.
[10] SILVA R P,ROLIM M M,GOMES I F,et al.Numerical modeling of soil compaction in a sugarcane crop using the finite element method[J].Soil & Tillage Research,2018,181:1-10.
[11] SHAMAL S A M,ALHWAIMEL S A,MOUAZEN A M.Application of an online sensor to map soil packing density for site specific cultivation[J].Soil & Tillage Research,2016,162:78-86.
[12] KOWALCZYK S,MALAKOWSKI M,TUCHOLKA P.Determination of the correlation between the electrical resistivity of non-cohesive soils and the degree of compaction[J].Journal of Applied Geophysics,2014,110:43-50.
[13] NADERI-BOLDAJI M,SHARIFI A,ALIMARDANI R,et al.Use of a triple-sensor fusion system for on-the-go measurement of soil compaction[J].Soil & Tillage Research,2013,128:44-53.
[14] TROLDBORG M,AALDERS I,TOWERS W,et al.Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats: using soil compaction as an example[J].Soil & Tillage Research,2013,132:56-68.
[15] BOIVIN P, SCHAFFER B, TEMGOUA E, et al. Assessment of soil compaction using soil shrinkage modelling:experimental data and perspectives[J].Soil & Tillage Research,2006,88:65-79.
[16] TOBIAS S,TIETJE O.Modelling experts’ judgments on soil compaction to derive decision rules for soil protection: a case study from Switzerland[J].Soil & Tillage Research,2007,92(1):129-143.
[17] PASDARPOUR M,GHAZAVI M,TESHNEHLAB M,et al.Optimal design of soil dynamic compaction using genetic algorithm and fuzzy system[J].Soil Dynamics and Earthquake Engineering,2009,29:1103-1112.
[18] TAGHAVIFAR H,MARDANI A,TAGHAVIFAR L.A hybridized artificial neural network and imperialist competitive algorithm optimization approach for prediction of soil compaction in soil bin facility[J].Measurement,2013,46(8):2288-2299.
[19] 林鲁生,冯夏庭,白世伟,等.人工神经网络在边坡滑移预测中的应用[J].岩土力学,2002,23(4):508-510.
LIN Lusheng,FENG Xiating,BAI Shiwei,et al.Application of artificial neural network to prediction of sliding slope[J].Rock and Soil Mechanics,2002,23(4):508-510.(in Chinese)
[20] 史笑凡,杨春风,王可意.基于支持向量机和改进BP神经网络的路基边坡稳定性研究[J].公路交通科技,2019,36(1):31-37.
SHI Xiaofan,YANG Chunfeng,WANG Keyi.Study on stability of roadbed slope based on SVM and improved BP neural network[J].Journal of Highway and Transportation Research and Development,2019,36(1):31-37.(in Chinese)
[21] ZARE A H,BAYAT V M,GOLMOHAMMADI G,et al.Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two different climates[J].Arabian Journal of Geosciences,2016,9(5):377.
[22] SARKAR T,MISHRA M.Soil erosion susceptibility mapping with the application of logistic regression and artificial neural network[J].Journal of Geovisualization and Spatial Analysis,2018,2(1):1-17.
[23] SHAHABI M,JAFARZADEH A A,NEYSHABOURI M R,et al.Spatial modeling of soil salinity using multiple linear regression,ordinary kriging and artificial neural network methods[J].Archives of Agronomy and Soil Science,2016,63(2):151-160.
[24] 杨学超,何彩平.基于BP人工神经网络的路基压实度预测模型研究[J].甘肃科学学报,2011,23(3):132-135.
YANG Xuechao,HE Caiping.Prediction model of subgrade compaction based on BP artificial neural network[J].Journal of Gansu Sciences,2011,23(3):132-135.(in Chinese)
[25] 李细荣.基于神经网络的土密实度检测[J].甘肃农业大学学报,2015,50(4):175-180.
LI Xirong.Detection of soil compactness based on neural networks[J].Journal of Gansu Agricultural University,2015,50(4):175-180.(in Chinese)
[26] RANASINGHE R A T M,JAKSA M B,KUO Y L,et al.Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results[J].Journal of Rock Mechanics and Geotechnical Engineering,2017,9(2):340-349.
[27] 刘国光,武志玮,牛富俊,等.基于BP神经网络的场道脱空检测方法及实验[J].深圳大学学报理工版,2016,33(3):309-316.
LIU Guoguang,WU Zhiwei,NIU Fujun,et al.Airport pavement void testing based on back propagation neural network[J].Journal of Shenzhen University Science and Engineering,2016,33(3):309-316.(in Chinese)
[28] 何秉顺,刘建坤,房建宏.使用人工神经网络预测冻土区公路路基沉降[J].公路交通科技,2005(11):46-48.
HE Bingshun,LIU Jiankun,FANG Jianhong.Prediction of subgrade settlement in permafrost are a using artificial neural network[J].Journal of Highway and Transportation Research and Development,2005(11):46-48.(in Chinese)
[29] SHU C,OUARDA T B M J.Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system[J].Journal of Hydrology,2008,349(1/2):31-43.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(1):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(1):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(1):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(1):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(1):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(1):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(1):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(1):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(1):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(1):501.[doi:10.3724/SP.J.1249.2017.05501]
[11]刘国光,等.春融作用对寒区机场土面区工作性能的影响[J].深圳大学学报理工版,2019,36(6):621.[doi:10.3724/SP.J.1249.2019.06621]
 LIU Guoguang,,et al.Influences of spring thaw on working performance of airport soil field surface in cold region[J].Journal of Shenzhen University Science and Engineering,2019,36(1):621.[doi:10.3724/SP.J.1249.2019.06621]

备注/Memo

备注/Memo:
Received:2020-06-03;Accepted:2020-08-08
Foundation:Fundamental Scientific Research Project of Central Universities(3122018C013);Science and Technology Commissioner Project of Tianjin Enterprise(19JCTPJC53800);Scientific Research Project of Tianjin Municipal Education Commission(2018KJ243)
Corresponding author:Associate professor LIU Guoguang.Email: ggliu@cauc.edu.cn
Citation:LIU Guoguang,PEI Leiyang,YANG Yuemin,et al.Compactness prediction of airport soil field based on artificial neural network[J]. Journal of Shenzhen University Science and Engineering, 2021, 38(1): 54-60.(in Chinese)
基金项目:中央高校基本科研业务费资助项目(3122018C013);天津市企业科技特派员资助项目(19JCTPJC53800);天津市教委科研资助项目(2018KJ243)
作者简介:刘国光(1980—),中国民航大学副教授、博士.研究方向:机场工程、防灾减灾及防护工程.
E-mail:ggliu@cauc.edu.cn
引文:刘国光,裴磊洋,杨跃敏,等.基于人工神经网络的机场土面区压实度预测[J]. 深圳大学学报理工版,2021,38(1):54-60.
更新日期/Last Update: 2021-01-26