参考文献/References:
[1] SUN Wenyun, ZHAO Haitao, JIN Zhong. A complementary facial representation extracting method based on deep learning[J]. Neurocomputing, 2018, 306(6): 246-259.
[2] LANGNER O, DOTSCH R, BIJLSTRA G, et al. Presentation and validation of the Radboud faces database[J]. Cognition and Emotion, 2010, 24(8): 1377-1388.
[3] TRAN L, YIN Xi, LIU Xiaoming. Disentangled representation learning gan for pose-invariant face recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 1415-1424.
[4] ZHANG Zhifei, SONG Yang, QI Hairong. Age progression/regression by conditional adversarial autoencoder[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 5810-5818.
[5] MA Liqian, SUN Qianru, GEORGOULIS S, et al. Disentangled person image generation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 99-108.
[6] BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[EB/OL]. (2018-07-18)[2018-07-23]. https://arxiv.org/abs/1807.07543, 2018.
[7] ZHU Zhenyao, LUO Ping, WANG Xiaogang, et al. Multi-view perceptron: a deep model for learning face identity and view representations[C]// Proceedings of the 27th Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014, 1: 217-225.
[8] DOSOVITSKIY A, SPRINGENBERG J T, BROX T. Learning to generate chairs with convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1538-1546.
[9] SUN Baochen, FENG Jiashi, SAENKO K. Return of frustratingly easy domain adaptation[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, USA: AIII Press, 2016: 2058-2065.
[10] SUN Baochen, SAENKO K. Deep coral: correlation alignment for deep domain adaptation[C]// Proceedings of the European Conference on Computer Vision.[S. l.]: Spring, 2016: 443-450.
[11] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]// Advances in Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2016: 343-351.
[12] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 2414-2423.
[13] ROZANTSEV A, SALZMANN M, FUA P. Beyond sharing weights for deep domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(4): 801-814.
[14] LI Yanghao, WANG Naiyan, LIU Jiaying, et al. Demystifying neural style transfer[C]// Proceedings of the International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 2230-2236.
[15] LIAO Qianli, LEIBO Joel Z, POGGIO Tomaso. Learning invariant representations and applications to face verification[C]// Advances in Neural Information Processing Systems. Lake Tahoe, USA: MIT Press, 2013: 3057-3065.
[16] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-02-11)[2015-03-02]. https://arxiv.org/abs/1502.03167, 2015.
[17] KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 1867-1874.
[18] HASSNER T, HAREL S, PAZ E, et al. Effective face frontalization in unconstrained images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 4295-4304.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: surpassing human-level performance on imageNet classification[C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1026-1034.
[20] CHEN Dong, CAO Xudong, WEN Fang, et al. Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013: 3025-3032.
[21] DONAHUE J, JIA Yangqing, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition[C]// Proceedings of the International Conference on Machine Learning. Beijing: JMLR.org, 2014, 32: 647-655.
[22] CHEN Dong, CAO Xudong, WANG Liwei, et al. Bayesian face revisited: a joint formulation[C]// Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer, 2012: 566-579.
相似文献/References:
[1]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(5):211.
[2]骆剑平,李霞.求解TSP的改进混合蛙跳算法[J].深圳大学学报理工版,2010,27(2):173.
LUO Jian-ping and LI Xia.Improved shuffled frog leaping algorithm for solving TSP[J].Journal of Shenzhen University Science and Engineering,2010,27(5):173.
[3]蔡良伟,李霞.基于混合蛙跳算法的作业车间调度优化[J].深圳大学学报理工版,2010,27(4):391.
CAI Liang-wei and LI Xia.Optimization of job shop scheduling based on shuffled frog leaping algorithm[J].Journal of Shenzhen University Science and Engineering,2010,27(5):391.
[4]张重毅,刘彦斌,于繁华,等.CDA市场环境模型进化研究[J].深圳大学学报理工版,2010,27(4):413.
ZHANG Zhong-yi,LIU Yan-bin,YU Fan-hua,et al.Research on the evolution model of CDA market environment[J].Journal of Shenzhen University Science and Engineering,2010,27(5):413.
[5]姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报理工版,2014,31(1):43.[doi:10.3724/SP.J.1249.2014.01043]
Jiang Jianguo,Zhou Jiawei,Zheng Yingchun,et al.A double flora bacteria foraging optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(5):43.[doi:10.3724/SP.J.1249.2014.01043]
[6]蔡良伟,刘思麒,李霞,等.基于蚁群优化的正则表达式分组算法[J].深圳大学学报理工版,2014,31(3):279.[doi:10.3724/SP.J.1249.2014.03279]
Cai Liangwei,Liu Siqi,Li Xia,et al.Regular expression grouping algorithm based on ant colony optimization[J].Journal of Shenzhen University Science and Engineering,2014,31(5):279.[doi:10.3724/SP.J.1249.2014.03279]
[7]宁剑平,王冰,李洪儒,等.递减步长果蝇优化算法及应用[J].深圳大学学报理工版,2014,31(4):367.[doi:10.3724/SP.J.1249.2014.04367]
Ning Jianping,Wang Bing,Li Hongru,et al.Research on and application of diminishing step fruit fly optimization algorithm[J].Journal of Shenzhen University Science and Engineering,2014,31(5):367.[doi:10.3724/SP.J.1249.2014.04367]
[8]刘万峰,李霞.车辆路径问题的快速多邻域迭代局部搜索算法[J].深圳大学学报理工版,2015,32(2):196.[doi:10.3724/SP.J.1249.2015.02000]
Liu Wanfeng,and Li Xia,A fast multi-neighborhood iterated local search algorithm for vehicle routing problem[J].Journal of Shenzhen University Science and Engineering,2015,32(5):196.[doi:10.3724/SP.J.1249.2015.02000]
[9]蔡良伟,程璐,李军,等.基于遗传算法的正则表达式规则分组优化[J].深圳大学学报理工版,2015,32(3):281.[doi:10.3724/SP.J.1249.2015.03281]
Cai Liangwei,Cheng Lu,Li Jun,et al.Regular expression grouping optimization based on genetic algorithm[J].Journal of Shenzhen University Science and Engineering,2015,32(5):281.[doi:10.3724/SP.J.1249.2015.03281]
[10]陈玉佳,姜波.基于小波神经网络的加工番茄产量预测模型[J].深圳大学学报理工版,2015,32(5):546.[doi:10.3724/SP.J.1249.2015.05546]
Chen Yujia and Jiang Bo.A wavelet neural network model for processing tomato yield forecasting[J].Journal of Shenzhen University Science and Engineering,2015,32(5):546.[doi:10.3724/SP.J.1249.2015.05546]