MIN Changjun,YUAN Yunqi,ZHANG Yuquan,et al.The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J].Journal of Shenzhen University Science and Engineering,2020,37(5):441-458.[doi:10.3724/SP.J.1249.2020.05441]





The hand of light for micro/nano-particle manipulation: research progress of optical tweezers
深圳大学纳米光子学研究中心,深圳市微尺度光信息重点实验室,微纳光电子学研究院,广东深圳 518060
MIN Changjun YUAN Yunqi ZHANG Yuquan WANG Xianyou ZHANG Zhibin and YUAN Xiaocong
Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
光学 光镊 光学全息 矢量光束 表面等离激元 光纤光镊 表面增强拉曼散射 三维显示
optics optical tweezers optical holography vector beam surface plasmon fiber optical tweezers surface-enhanced Raman scattering three dimensional display
Optical tweezer is an important technology for trapping and manipulating micro/nano-particles, which has widely been applied in physics, chemistry, biology, medicine and other fields. In this work, based on the research progresses in recent years, we systematically review the main research directions and representative achievements of optical tweezers. We introduce the theoretical basis about the mechanism of capturing objects and several common theoretical models of optical tweezers. According to the distribution of incident light beams, we classify the optical tweezers into structural beam optical tweezer, multi-beam and holographic optical tweezer, near-field evanescent wave tweezer, surface plasmon optical tweezer, optical fiber tweezer, opto-thermoelectric tweezer, femtosecond laser tweezer, and extraordinary optical forces tweezer. And the characteristics and latest developments of optical tweezers are discussed in detail respectively. In terms of innovative applications, we emphatically focus in the fields of biological sample manipulation, molecular detection, naked-eye three dimensional display, etc. In the final section, we provide a summary and prospect about the future development of optical tweezers technology.


[1] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.
[2] RAMSER K, HANSTORP D. Optical manipulation for single-cell studies[J]. Journal of Biophotonics, 2010, 3(4): 187-206.
[3] LI T C, KHEIFETS S, RAIZEN M G. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Physics, 2011, 7(7): 527-530.
[4] JONAS A, ZEMANEK P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis[J]. Electrophoresis, 2008, 29(24): 4813-4851.
[5] QUIDANT R, GIRARD C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Reviews, 2008, 2(1/2): 47-57.
[6] LUKOSZ W, KUNZ R E. Light-emission by magnetic and electric dipoles close to a plane interface. I. total radiated power[J]. Journal of the Optical Society of America, 1977, 67(12): 1607-1615.
[7] GUSSGARD R, LINDMO T, BREVIK I. Calculation of the trapping force in a strongly focused laser-beam[J]. Journal of the Optical Society of America B: Optical Physics, 1992, 9(10): 1922-1930.
[8] CHAUMET P C, NIETO-VESPERINAS M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 2000, 25(15): 1065-1067.
[9] HARADA Y, ASAKURA T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optics Communications, 1996, 124(5/6): 529-541.
[10] GREHAN G, MAHEU B, GOUESBET G. Scattering of laser-beams by mie scatter centers-numerical results using a localized approximation[J]. Applied Optics, 1986, 25(19): 3539-3548.
[11] CHAUMET P C, NIETO-VESPERINAS M. Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate[J]. Physical Review B, 2000, 61(20): 14119-14127.
[12] LOCK J A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-mie theory. I. localized model description of an on-axis tightly focused laser beam with spherical aberration[J]. Applied Optics, 2004, 43(12): 2532-2544.
[13] SONG Y G, HAN B M, CHANG S. Force of surface plasmon-coupled evanescent fields on mie particles[J]. Optics Communications, 2001, 198(1/2/3): 7-19.
[14] REN K F, GREHAN G, GOUESBET G. Prediction of reverse radiation pressure by generalized Lorenz-mie theory[J]. Applied Optics, 1996, 35(15): 2702-2710.
[15] SASAKI K, KOSHIOKA M, MISAWA H, et al. Optical trapping of a metal-particle and a water droplet by a scanning laser-beam[J]. Applied Physics Letters, 1992, 60(7): 807-809.
[16] GRIFFITHS D J. Introduction to electrodynamics[M]. Englewood Cliffs, USA: Prentice-Hall, 1981.
[17] 曹志良, 梁言生, 严绍辉, 等. 不同偏振态光镊三维光阱刚度的比较研究[J]. 光子学报,2019, 48(7): 0726002.
CAO Zhiliang, LIANG Yansheng, YAN Shaohua, et al. Comparison investigation of the three-dimensional stiffness of optical tweezers with different polarization fields[J]. Acta Photonica Sinica, 2019, 48(7): 0726002.(in Chinese)
[18] TONG L M, MILJKOVIC V D, ALIGNMENT K M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces[J]. Nano Letters, 2010, 10(1): 268-273.
[19] RODRIGUEZ-OTAZO M, AUGIER-CALDERIN A, GALAUP J P, et al. High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light[J]. Applied Optics, 2009, 48(14): 2720-2730.
[20] SIMPSON S H, HANNA S. Optical trapping of spheroidal particles in gaussian beams[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 2007, 24(2): 430-443.
[21] BLIOKH K Y, RODRIGUEZ-FORTUNO F J, NORI F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.
[22] PARKIN S, KNONER G, NIEMINEN T A, et al. Measurement of the total optical angular momentum transfer in optical tweezers[J]. Optics Express, 2006, 14(15): 6963-6970.
[23] ORON R, BLIT S, DAVIDSON N, et al. The formation of laser beams with pure azimuthal or radial polarization[J]. Applied Physics Letters, 2000, 77(21): 3322-3324.
[24] CURTIS J E, GRIER D G. Structure of optical vortices[J]. Physical Review Letters, 2003, 90(13): 133901.
[25] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy airy beams[J]. Optics Letters, 2007, 32(8): 979-981.
[26] MIN Changjun, SHEN Zhe, SHEN Junfeng, et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 2013, 4: 2891.
[27] WANG Xianyou, ZHANG Yuquan, DAI Yanmeng, et al. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 2018, 6(9): 847-852.
[28] ZHANG Yuquan, DOU Xiujie, DAI Yanmeng, et al. All-optical manipulation of micrometer-sized metallic particles[J]. Photonics Research, 2018, 6(2): 66-71.
[29] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348.
[30] SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 1997, 22(1): 52-54.
[31] ZHENG Zhu, ZHANG Baifu, CHEN Hao, et al. Optical trapping with focused airy beams[J]. Applied Optics, 2011, 50(1): 43-49.
[32] BAUMGARTL J, MAZILU M, DHOLAKIA K. Optically mediated particle clearing using airy wavepackets[J]. Nature Photonics, 2008, 2(11): 675-678.
[33] LI Manman, YAN Shaohui, YAO Baoli, et al. Optically induced rotation of rayleigh particles by vortex beams with different states of polarization[J]. Physics Letters A, 2016, 380(1/2): 311-315.
[34] LI Manman, YAN Shaohui, YAO Baoli, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604-20612.
[35] MAN Zhongsheng, DU Luping, ZHANG Yuquan, et al. Focal and optical trapping behaviors of radially polarized vortex beam with broken axial symmetry[J]. AIP Advances, 2017, 7(6): 4984813.
[36] BHEBHE N, WILLIAMS P A C, ROSALES-GUZMAN C, et al. A vector holographic optical trap[J]. Scientific Reports, 2018, 8: 17387.
[37] GECEVICIUS M, DREVINSKAS R, BERESNA M, et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Applied Physics Letters, 2014, 104(23): 231110.
[38] FALLMAN E, AXNER O. Design for fully steerable dual-trap optical tweezers[J]. Applied Optics, 1997, 36(10): 2107-2113.
[39] MIO C, GONG T, TERRAY A, et al. Design of a scanning laser optical trap for multiparticle manipulation[J]. Review of Scientific Instruments, 2000, 71(5): 2196-2200.
[40] CHU S, HOLLBERG L, BJORKHOLM J E, et al. 3-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1): 48-51.
[41] CURTIS J E, KOSS B A, GRIER D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1/2/3/4/5/6): 169-175.
[42] SHAW L A, SPADACCINI C M, HOPKINS J B. Scanning holographic optical tweezers[J]. Optics Letters, 2017, 42(15): 2862-2865.
[43] KIRKHAM G R, BRITCHFORD E, UPTON T, et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers[J]. Scientific Reports, 2015, 5: 8577.
[44] YU Xianghua, LI Runze, YAN Shaowei, et al. Experimental demonstration of 3D accelerating beam arrays[J]. Applied Optics, 2016, 55(11): 3090-3095.
[45] GARCES-CHAVEZ V, DHOLAKIA K, SPALDING G C. Extended-area optically induced organization of microparticies on a surface[J]. Applied Physics Letters, 2005, 86(3): 031106.
[46] GU Min, HAUMONTE J B, MICHEAU Y, et al. Laser trapping and manipulation under focused evanescent wave illumination[J]. Applied Physics Letters, 2004, 84(21): 4236-4238.
[47] GU Min, KE Puchun. Depolarization of evanescent waves scattered by laser-trapped gold particles: effect of particle size[J]. Journal of Applied Physics, 2000, 88(9): 5415-5420.
[48] KURIAKOSE S, GAN Xiasong, CHON J W M, et al. Optical lifting force under focused evanescent wave illumination: a ray optics model[J]. Journal of Applied Physics, 2005, 97(8): 083103.
[49] KAWATA S, SUGIURA T. Movement of micrometer-sized particles in the evanescent field of a laser-beam[J]. Optics Letters, 1992, 17(11): 772-774.
[50] NG L N, ZERVAS M N, WILKINSON J S, et al. Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide[J]. Applied Physics Letters, 2000, 76(15): 1993-1995.
[51] RIGHINI M, ZELENINA A S, GIRARD C, et al. Parallel and selective trapping in a patterned plasmonic landscape[J]. Nature Physics, 2007, 3(7): 477-480.
[52] ZHANG Weihua, HUANG Lina, SANTSCHI C, et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Letters, 2010, 10(3): 1006-1011.
[53] LIN Y C, LEE P T. Efficient optical trapping and detection of nanoparticle via plasmonic bowtie notch[J]. IEEE Photonics Journal, 2019, 11(2): 4800610.
[54] SHOJI T, SAITOH J, KITAMURA N, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light[J]. Journal of the American Chemical Society, 2013, 135(17): 6643-6648.
[55] WANG Xianyou, DAI Yanmeng, ZHANG Yuquan, et al. Plasmonic manipulation of targeted metallic particles by polarization-sensitive metalens[J]. ACS Photonics, 2018, 5(7): 2945-2950.
[56] MAN Zhongsheng, ZHANG Shuoshuo, BAI Zhidong, et al. All-optical and dynamic manipulation of surface plasmon polaritons by tailoring the polarization state of incident light[J]. Laser Physics Letters, 2019, 16(2): 026001.
[57] ZHANG Yuquan, SHI Wei, SHEN Zhe, et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 2015, 5: 15446.
[58] ZHANG Yuquan, WANG Jian, SHEN Junfeng, et al. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface[J]. Nano Letters, 2014, 14(11): 6430-6436.
[59] LI Zhipeng, ZHANG Shunping, TONG Lianming, et al. Ultrasensitive size-selection of plasmonic nanoparticles by fano interference optical force[J]. ACS Nano, 2014, 8(1): 701-708.
[60] PAIVA J S, JORGE P S, ROSA C C, et al. Optical fiber tips for biological applications: from light confinement, biosensing to bioparticles manipulation[J]. Biochimica et Biophysica Acta-General Subjects, 2018, 1862(5): 1209-1246.
[61] RIBEIRO R R, SOPPERA O, OLIVA A G, et al. New trends on optical fiber tweezers[J]. Journal of Lightwave Technology, 2015, 33(16): 3394-3405.
[62] RICKELT L F, OTTOSEN L D M, KUHL M. Etching of multimode optical glass fibers: a new method for shaping the measuring tip and immobilization of indicator dyes in recessed fiber-optic microprobes[J]. Sensors and Actuators B: Chemical, 2015, 211: 462-468.
[63] VAIANO P, CAROTENUTO B, PISCO M, et al. Lab on fiber technology for biological sensing applications[J]. Laser & Photonics Reviews, 2016, 10(6): 922-961.
[64] ZHU Wei, SHI Tielin, TANG Zirong, et al. Dynamic selective etching: a facile route to parabolic optical fiber nano-probe[J]. Optics Express, 2013, 21(6): 6919-6927.
[65] XIN Hongbao, LI Baojun. Fiber-based optical trapping and manipulation[J]. Frontiers of Optoelectronics, 2019, 12(1): 97-110.
[66] YUAN Libo, LIU Zhihai, YANG Jun, et al. Twin-core fiber optical tweezers[J]. Optics Express, 2008, 16(7): 4559-4566.
[67] LI Yuchao, XIN Hongbao, LIU Xiaoshuai, et al. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array[J]. ACS Nano, 2016, 10(6): 5800-5808.
[68] LU Jinsheng, YANG Hangbo, ZHOU Lina, et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force[J]. Physical Review Letters, 2017, 118(4): 043601.
[69] CHEN Jiajie, CONG Hengji, LOO F C, et al. Thermal gradient induced tweezers for the manipulation of particles and cells[J]. Scientific Reports, 2016, 6: 35814.
[70] LIN Linhan, PENG Xiaolei, ZHENG Yuebing. Reconfigurable opto-thermoelectric printing of colloidal particles[J]. Chemical Communications, 2017, 53(53): 7357-7360.
[71] LIU Yaoran, LIN Linhan, RAJEEVA B B, et al. Nanoradiator-mediated deterministic opto-thermoelectric manipulation[J]. ACS Nano, 2018, 12(10): 10383-10392.
[72] KOTNALA A, ZHENG Yuebing. Opto-thermophoretic fiber tweezers[J]. Nanophotonics, 2019, 8(3): 475-485.
[73] KOLLIPARA P S, LIN Linhan, ZHENG Yuebing. Thermo-electro-mechanics at individual particles in complex colloidal systems[J]. Journal of Physical Chemistry C, 2019, 123(35): 21639-21644.
[74] LIN Linhan, WANG Mingsong, PENG Xiaolei, et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 2018, 12(4): 195-201.
[75] KOTSIFAKI D G, KANDYLA M, LAGOUDAKIS P G. Plasmon enhanced optical tweezers with gold-coated black silicon[J]. Scientific Reports, 2016, 6: 26275.
[76] ROXWORTHY B J, TOUSSAINT K C. Femtosecond-pulsed plasmonic nanotweezers[J]. Scientific Reports, 2012, 2: 660.
[77] SHAKHOV A M, ASTAFIEV A A, PLUTENKO D O, et al. Femtosecond optical trap-assisted nanopatterning through microspheres by a single Ti∶Sapphire oscillator[J]. Journal of Physical Chemistry C, 2015, 119(22): 12562-12571.
[78] GU Bin, CAO Xi, RUI Guanghao, et al. Vector beams excited nonlinear optical effects[J]. Journal of Nonlinear Optical Physics & Materials, 2018, 27(4): 1850045.
[79] GONG Liping, ZHANG Xiaohe, GU Bing, et al. Optical pulling forces on rayleigh particles using ambient optical nonlinearity[J]. Nanophotonics, 2019, 8(6): 1117-1124.
[80] JIANG Yuqiang, NARUSHIMA T, OKAMOTO H. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses[J]. Nature Physics, 2010, 6(12): 1005-1009.
[81] ZHANG Yuquan, SHEN Junfeng, MIN Changjun, et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams[J]. Nano Letters, 2018, 18(9): 5538-5543.
[82] CHEN Jun, NG J, LIN Zhifang, et al. Optical pulling force[J]. Nature Photonics, 2011, 5(9): 531-534.
[83] SAENZ J J. Optical forces laser tractor beams[J]. Nature Photonics, 2011, 5(9): 514-515.
[84] CUCHE A, STEIN B, CANAGUIER D A, et al. Brownian motion in a designer force field: dynamical effects of negative refraction on nanoparticles[J]. Nano Letters, 2012, 12(8): 4329-4332.
[85] RODRIGUEZ-FORTUNO F J, ENGHETA N, MARTINEZ A, et al. Lateral forces on circularly polarizable particles near a surface[J]. Nature Communications, 2015, 6: 10263.
[86] SUKHOV S, KAJORNDEJNUKUL V, NARAGHI R R, et al. Dynamic consequences of optical spin-orbit interaction[J]. Nature Photonics, 2015, 9(12): 809-812.
[87] WANG S B, CHAN C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 2014, 5: 3307.
[88] ZHONG Mincheng, WEI Xunbin, ZHOU Jinhua, et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 2013, 4: 1768.
[89] ZHANG Yuquan, WU Xiaojing, MIN Changjun, et al. Engineered tumor cell apoptosis monitoring method based on dynamic laser tweezers[J]. Biomed Research International, 2014, 2014: 279408.
[90] WANG M D, YIN H, LANDICK R, et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 1997, 72(3): 1335-1346.
[91] PANG Yuanjie, GORDON R. Optical trapping of a single protein[J]. Nano Letters, 2012, 12(1): 402-406.
[92] SVEDBERG F, LI Zhipeng, XU Hongxing, et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation[J]. Nano Letters, 2006, 6(12): 2639-2641.
[93] SHEN Junfeng, WANG Jian, ZHANG Cuijiao, et al. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering[J]. Applied Physics Letters, 2013, 103(19): 191119.
[94] SUN Qiuyue, ZHANG Yuquan, SUN Lixun, et al. Microscopic surface plasmon enhanced Raman spectral imaging[J]. Optics Communications, 2017, 392: 64-67.
[95] YANG Aiping, DU Luping, DOU Xiujie, et al. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam[J]. Plasmonics, 2018, 13(3): 991-996.
[96] ZHANG Yuquan, SHEN Junfeng, XIE Zhenwei, et al. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering[J]. Nanoscale, 2017, 9(30): 10694-10700.
[97] BRADAC C. Nanoscale optical trapping: a review[J]. Advanced Optical Materials, 2018, 6(12): 1800005.
[98] RAJEEVA B B, LIN Linhan, PERILLO E P, et al. High-resolution bubble printing of quantum dots[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16725-16733.
[99] MONTELONGO Y, YETISEN A K, BUTT H, et al. Reconfigurable optical assembly of nanostructures[J]. Nature Communications, 2016, 7: 12002.
[100] DO J, FEDORUK M, JACKEL F, et al. Two-color laser printing of individual gold nanorods[J]. Nano Letters, 2013, 13(9): 4164-4168.
[101] LIN Linhan, PENG Xiaolei, MAO Zhangming, et al. Bubble-pen lithography[J]. Nano Letters, 2016, 16(1): 701-708.
[102] SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display[J]. Nature, 2018, 553(7689): 486-490.
[103] JURADO-SANCHEZ B, ESCARPA A. Milli, micro and nanomotors: novel analytical tools for real-world applications[J]. Trac-Trends in Analytical Chemistry, 2016, 84: 48-59.
[104] GALAJDA P, ORMOS P. Complex micromachines produced and driven by light[J]. Applied Physics Letters, 2001, 78(2): 249-251.
[105] QUINTO-SU P A. A microscopic steam engine implemented in an optical tweezer[J]. Nature Communications, 2014, 5: 5889.


 RUAN Shuang-chen,QUAN Run-ai,ZHANG Min,et al.CW THz imaging constructions in reflection geometry[J].Journal of Shenzhen University Science and Engineering,2010,27(5):6.
 LI Xue-jin,SONG Kui-yan,HONG Xue-ming,et al.Research on temperature characteristics of hollow dual-core liquid-filled photonic crystal fiber[J].Journal of Shenzhen University Science and Engineering,2010,27(5):28.
 YANG Yi-biao,WANG Yun-cai,WANG Shuan-feng,et al.The bandgap characteristics of two dimensional graphite lattice photonic crystals with dielectric rods[J].Journal of Shenzhen University Science and Engineering,2010,27(5):157.
 LIANG Hua-wei,RUAN Shuang-chen,ZHANG Min,et al.Study on the focusing characteristics of conical metal nanowires[J].Journal of Shenzhen University Science and Engineering,2012,29(5):300.[doi:10.3724/SP.J.1249.2012.04300]
 LIU Junxing,SUO Peng,et al.Broad band antireflection in terahertz band based on vanadium dioxide phase transition[J].Journal of Shenzhen University Science and Engineering,2019,36(5):189.[doi:10.3724/SP.J.1249.2019.02189]
 ZHAO Xiaodan,WANG Tonglin,ZHANG Mingda,et al.Experimental analysis and compensation method of one-dimensional photonic crystal with disordered film thickness perturbation[J].Journal of Shenzhen University Science and Engineering,2020,37(5):44.[doi:10.3724/SP.J.1249.2020.01044]
 CAI Zhiwen,XIAO Xiaoping,WANG Xueliang,et al.The kinetic study on the interactions of IgG and antibody-binding proteins based on SPR sensor[J].Journal of Shenzhen University Science and Engineering,2021,38(5):98.[doi:10.3724/SP.J.1249.2021.01098]


Foundation:National Natural Science Foundation of China (91750205, 61935013, 61975128)
Corresponding author:Professor YUAN Xiaocong.E-mail: xcyuan@szu.edu.cn
Citation:MIN Changjun,YUAN Yunqi,ZHANG Yuquan,et al.The hand of light for micro/nano-particle manipulation: research progress of optical tweezers[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(5): 441-458.(in Chinese)
基金项目:国家自然科学基金资助项目(91750205, 61935013, 61975128)
引文:闵长俊,袁运琪,张聿全,等.操纵微纳颗粒的“光之手”——光镊技术研究进展[J]. 深圳大学学报理工版,2020,37(5): 441-458.
更新日期/Last Update: 2020-07-26