[1]许民泽,崔春义,姚怡亦,等.埋深对可液化场地地铁车站地震响应的影响[J].深圳大学学报理工版,2020,37(3):287-292.[doi:10.3724/SP.J.1249.2020.03287]
 XU Minze,CUI Chunyi,YAO Yiyi,et al.Influence of burial depth on the seismic response of subway station in liquefiable subgrade[J].Journal of Shenzhen University Science and Engineering,2020,37(3):287-292.[doi:10.3724/SP.J.1249.2020.03287]
点击复制

埋深对可液化场地地铁车站地震响应的影响()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第3期
页码:
287-292
栏目:
土木建筑工程
出版日期:
2020-05-20

文章信息/Info

Title:
Influence of burial depth on the seismic response of subway station in liquefiable subgrade
文章编号:
202003011
作者:
许民泽1崔春义1姚怡亦1王广兵1梁志孟1厉超吉1王启福2
1)大连海事大学土木工程系,辽宁大连 116026
2)大连海事大学安全工程系,辽宁大连 116026
Author(s):
XU Minze1 CUI Chunyi1 YAO Yiyi1WANG Guangbing1 LIANG Zhimeng1 LI Chaoji1 and WANG Qifu2
1) Department of Civil Engineering, Dalian Maritime University, Dalian 116026, Liaoning Province, P.R.China
2) Department of Safety Engineering, Dalian Maritime University, Dalian 116026, Liaoning Province, P.R.China
关键词:
岩土工程地铁车站埋深可液化场地数值模拟Biot动力固结理论动力响应
Keywords:
geotechnical engineering subway station burial depth liquefiable subgrade numerical simulation Biot dynamic consolidation theory dynamic response
分类号:
TU91
DOI:
10.3724/SP.J.1249.2020.03287
文献标志码:
A
摘要:
为分析埋深对可液化场地地铁车站结构的地震动响应影响规律,在OpenSees开源程序平台和Biot动力固结理论基础上,采用修正的多屈服面塑性砂土动力本构模型,同时考虑结构动力非线性的纤维截面单元,建立饱和砂土场地-地铁车站结构相互作用数值计算模型,并分析了在地铁车站不同埋深情况下,场地的加速度反应谱及结构变形和内力的动力响应. 分析结果表明,随着车站结构埋深的减小,场地特征点处加速度β反应谱峰值变大,且各埋深工况均呈现出明显的场地放大效应;随着车站结构埋深的增加,各关键截面动内力峰值变大,而对应的层间位移角极值和结构上浮量均呈现减小趋势,其中中柱上端部截面受埋深影响程度最为显著.
Abstract:
In order to study the effect of burial depth on the dynamic response of subway station structure, a numerical model of subway station structure embedded in saturated liquefiable subgrade is established based on OpenSees platform and Biot dynamic consolidation theory, in which a multi-yield surface model and a fiber-section element model are used to describe the cyclic plastic behavior of sand and structure respectively. Furthermore, the acceleration spectrum of subgrade and dynamic response of structural deformation and internal force under different burial depths of subway station are analyzed. The results show that with the decrease of the burial depth of the station structure, the peak of the β-spectrum of typical points of the site increases, and the site amplification effect is obvious on each burial depth condition. In addition, with the increase of burial depth of station structure, the peak value of dynamic internal force of each key section for station structure increases, while the corresponding maximum value of interlayer drift angle and the uplift of the structure decrease, in which the burial depth has the most significant effect on the dynamic behavior on the upper end section of the middle column.

参考文献/References:

[1] SUSUMU T, HIROFUMI T, TADASHI H, et al. Liquefaction at a housing site reclaimed using well-graded gravelly soil[J]. Japanese Geotechnical Journal, 2010, 5(2):377-390.
[2] 李培河, 戚承志. 成层地基中不同土层分布对地下结构的抗震影响[J].解放军理工大学学报自然科学版, 2014, 15(5): 457-461.
LI Peihe, QI Chengzhi. Effect of different soil layer distribution on seismic response of underground structure in layered foundation [J]. Journal of PLA University of Science and Technology Natural Science, 2014, 15(5): 457-461.(in Chinese)
[3] LUAN M T, ZHANG X L, YANG Q, et al. Numerical analysis of liquefaction of porous seabed around pipeline fixed in space under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(5): 855-864.
[4] VESSIA G, VENISTI N. Liquefaction damage potential for seismic hazard evaluation in urbanized areas[J]. Soil Dynamic and Earthquake Engineering, 2013, 31(8): 1094-1105.
[5] 庄海洋, 龙慧, 陈国兴, 等. 可液化地基中地铁车站周围场地地震反应分析[J].岩土工程学报, 2012, 34(1): 81-88.
ZHUANG Haiyang, LONG Hui, CHEN Guoxing, et al. Seismic responses of surrounding site of subway station in liquefiable foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 81-88.(in Chinese)
[6] 刘华北, 宋二祥. 埋深对地下结构地震液化响应的影响[J]. 清华大学学报自然科学版, 2005, 45(3):301-305.
LIU Huabei, SONG Erxiang. Effects of burial depth on the liquefaction response of underground structures during an earthquake excitation[J]. Journal of Tsinghua University Science and Technology, 2005, 45(3): 301-305.(in Chinese)
[7] 李长青. 地下结构埋深对结构自身响应的影响分析[J]. 防灾减灾工程学报,2011, 31(增刊): 2011:171-176.
LI Changqing. Analysis of the effect of buried depth on the response of underground structure[J]. Journal of Disaster Prevention and Mitigation Engineering, 2011,31(Supply): 2011:171-176.(in Chinese)
[8] 林利民, 陈健云. 软土中浅埋地铁车站结构的抗震性能分析[J]. 防灾减灾工程学报, 2006, 26(3):268-273.
LIN Limin, CHEN Jianyun. Analysis of earthquake-resistant capacity of shallow-buried subway station structures in soft soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(3): 268-273.(in Chinese)
[9] 庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京:南京工业大学,2006.
ZHUANG Haiyang. Study on nonlinear dynamic soil-underground structure interaction and its large-size shaking table test[D]. Nanjing: Nanjing Technology University, 2006.(in Chinese)
[10] 董正方,蔡宝占,姚毅超, 等.反应加速度法和反应位移法精度随结构埋深变化的研究[J]. 振动与冲击, 2017, 36(14): 216-220.
DONG Zhengfang, CAI Baozhan, YAO Yichao, et al. Accuracy of the response acceleration method and response displacement method considering different imbedding depths of underground structures[J]. Journal of Vibration and Shock, 2017, 36(14): 216-220.(in Chinese)
[11] 刘晶波, 李彬. Rayleigh波作用下地下结构的动力反应分析[J]. 工程力学, 2006, 23(10):132-135.
LIU Jingbo, LI Bin. Dynamic response analysis of underground structures during propagation of Rayleigh waves[J]. Engineering Mechanics, 2006, 23(10):132-135.(in Chinese)
[12] 王苏, 路德春, 杜修力. 地下结构地震破坏静-动力耦合模拟研究[J]. 岩土力学, 2012, 33(11):288-293.
WANG Su, LU Dechun, DU Xiuli. Research on underground structure seismic damage using static-dynamic coupling simulation method[J]. Rock and Soil Mechanics, 2012, 33(11):288-293.(in Chinese)
[13] LI L. Using numerical simulation to determine the seismic response of coastal underground structures in saturated soil deposits[J]. Journal of Coastal Research, 2017, 33(3): 583-595.
[14] HU J, CHEN Q, LIU H. Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils[J]. Tunnelling and Underground Space Technology, 2018, 79:35-51.
[15] HU J L, LIU H B. The uplift behavior of a subway station during different degree of soil liquefaction[J]. Procedia Engineering, 2017, 189:18-24.
[16] CHIAN S C, MADABHUSHI S P G. Effect of buried depth and diameter on uplift of underground structures in liquefied soils[J]. Soil Dynamics and Earthquake Engineering, 2012, 41:181-190.
[17] LIU H, SONG E. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations[J]. Computers and Geotechnics, 2005, 32(4):223-244.
[18] AZADI M, HOSSEINI S M M M. The uplifting behavior of shallow tunnels within the liquefiable soils under cyclic loadings[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 158-167.
[19] PITILAKIS K, TSINIDIS G, LEANZA A, et al. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2014, 67:1-15.
[20] YANG Z H, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, 129(12): 1119-1127.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(3):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(3):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(3):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(3):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(3):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(3):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(3):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(3):147.
[9]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(3):393.[doi:10.3724/SP.J.1249.2017.04393]
[10]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(3):501.[doi:10.3724/SP.J.1249.2017.05501]

备注/Memo

备注/Memo:
Received:2019-08-27;Accepted:2020-01-06
Foundation:National Natural Science Foundation of China (51578100);Fundamental Research Funds for the Central Universities (3132019601)
Corresponding author:Professor CUI Chunyi.E-mail: cuichunyi@dlmu.edu.cn
Citation:XU Minze, CUI Chunyi, YAO Yiyi, et al.Influence of burial depth on the seismic response of subway station in liquefiable subgrade[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(3): 287-292.(in Chinese)
基金项目:国家自然科学基金资助项目(51578100);中央高校基础研究资助项目(3132019601)
作者简介:许民泽(1995—),大连海事大学硕士研究生.研究方向:岩土工程数值计算与分析.E-mail:xuminze123@163.com
引文:许民泽,崔春义,姚怡亦,等.埋深对可液化场地地铁车站地震响应的影响[J]. 深圳大学学报理工版,2020,37(3):287-292.
更新日期/Last Update: 2020-05-30