[1]王丽娟,张家铭,张海潇,等.基于流固耦合的埋地供水管道地震响应分析[J].深圳大学学报理工版,2020,37(3):271-278.[doi:10.3724/SP.J.1249.2020.03271]
 WANG Lijuan,ZHANG Jiaming,ZHANG Haixiao,et al.Seismic response analysis of buried water supply pipeline based on fluid-solid interaction[J].Journal of Shenzhen University Science and Engineering,2020,37(3):271-278.[doi:10.3724/SP.J.1249.2020.03271]
点击复制

基于流固耦合的埋地供水管道地震响应分析()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第3期
页码:
271-278
栏目:
土木建筑工程
出版日期:
2020-05-20

文章信息/Info

Title:
Seismic response analysis of buried water supply pipeline based on fluid-solid interaction
文章编号:
202003009
作者:
王丽娟张家铭张海潇张锐
河北工业大学土木与交通学院,天津 300401
Author(s):
WANG LijuanZHANG JiamingZHANG Haixiaoand ZHANG Rui
School of Civil and Transportation Engineering,Hebei University of Technology,Tianjin 300401,P.R.China
关键词:
市政工程供水管道流固耦合动网格地震波有限元模拟
Keywords:
municipal engineering water supply pipeline fluid-solid interaction dynamic mesh seismic wave finite element simulation
分类号:
TU991
DOI:
10.3724/SP.J.1249.2020.03271
文献标志码:
A
摘要:
为研究埋地供水管道在地震作用下的动力学特性,以流固耦合理论为基础,结合ANSYS Workbench软件,建立埋地供水管道在地震作用下的管-水流固耦合模型,采用四面体单元代替六面体单元对管道内流体进行网格划分,在施加土压力荷载和地震动力作用下,分析管道总变形和等效应力,探究流体流速、工作压力、管径、埋深及壁厚等参数对管道最大等效应力响应情况.结果表明,在地震波加载4.2 s时,管道总变形和等效应力均达到最大值,最大变形出现在管道中部,等效应力的最大值出现在管道的出口端;管道的等效应力随管道的埋深、壁厚和工作压力的增加而增大,不受流体流速的影响,但随管径的增加先增大后减小.同等条件下,DN800管道的抗震性能最佳.
Abstract:
In order to study the dynamic characteristics of buried water pipeline under earthquake action, we establish a fluid-solid interaction model for buried water supply pipeline under earthquake based on the theory of fluid-solid interaction and ANSYS Workbench software. The grids are generated by tetrahedral unit instead of hexahedral element. We analyze the total deformation and equivalent stress of the pipeline, and investigate the maximum equivalent stress response of the parameters such as fluid flow velocity, working pressure, pipe diameter, buried depth and wall thickness under the action of soil pressure and seismic force. The results show that the total deformation and equivalent stress of the pipeline reach the maximum when the seismic wave is loaded as 4.2 s, and the maximum deformation occurs in the middle of the pipeline. The maximum value of the equivalent stress appears at the outlet of the pipeline; the equivalent stress of the pipeline increases with the increase of the buried depth, wall thickness and working pressure of the pipeline, and it is not affected by the fluid velocity, but increases first and then decreases with the increase of the pipe diameter. Under the same conditions, the seismic performance of DN800 pipeline is the best.

参考文献/References:

[1] CHENG K M, WANG R L. Seismic response behavior of buried pipelines[J]. Journal of Pressure Vessel Technology, 1979, 101(1): 21-30.
[2] HETENYI M. Beams on elastic foundationtheory with applications in the fields of civil and mechanical engineering[M]. Michigan:University of Michigan Press, 1958.
[3] 范文亮, 姚娟娟, 张春涛, 等. 埋地管道的横向静力分析耦合模型及其解耦条件[J].计算力学学报, 2013, 30(3): 437-443.
FAN Wenliang, YAO Juanjuan, ZHANG Chuntao, et al. A coupling model and uncoupling condition of ring static analysis for buried pipes[J]. Chinese Journal of Computational Mechanics, 2013, 30(3): 437-443.(in Chinese)
[4] 黄强兵, 彭建兵. 基于地震波入射角的地下管道地震应力计算[J]. 地下空间与工程学报, 2008, 4(5): 979-984.
HUANG Qiangbing, PENG Jianbing.Calculation about earthquake stress for underground pipeline based on the incident angle of earthquake wave[J]. Chinese Journal of Underground Space and Engineering,2008, 4(5): 979-984.(in Chinese)
[5] ZHANG J, CHILDRESS S, LIBCHABER A, et al. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind[J]. Nature, 2001, 408(6814): 835-839.
[6] WYLIE E B, STREETER V L, WIGGERT D C. Fluid transients[J]. Journal of Fluids Engineering, 1980, 102(3):384-385.
[7] FARHAT C, GEUZAINE P, BROWN G. Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter[J].Computers & Fluids, 2003, 32(1): 3-29.
[8] 张挺, 郭晓梅, 谭志新, 等. 基于有限积分法的输流直管轴向流固耦合有限积分法数值模拟[J]. 振动工程学报, 2019, 32(1): 160-167.
ZHANG Ting,GUO Xiaomei,TAN Zhixin, et al. Numerical simulation on FSI characteristic of fluid-conveying straight pipe by finite integration method[J]. Journal of Vibration Engineering,2019,32(1): 160-167.(in Chinese)
[9] 陈坚红, 周天情, 盛德仁, 等. 充流管道单向流固耦合数值模拟自动化研究[J]. 动力工程学报, 2012, 32(8):612-616.
CHEN Jianhong, ZHOU Tianqing, SHENG Deren, et al. Automation of numerical simulation on one-way fluid-structure interaction of fluid-filled pipeline[J]. Journal of Power Engineering, 2012, 32(8): 612-616.(in Chinese)
[10] 周知进, 何星, 戴哲冰. 不同曲率情况下的液压管道流固耦合特性仿真研究[J]. 振动与冲击, 2017, 36(5): 214-220.
ZHOU Zhijin, HE Xing, DAI Zhebing. Simulation for fluid-solid interaction characteristics of hydraulic pipes with different curvatures[J]. Journal of Vibration and Shock, 2017, 36(5): 214-220.(in Chinese)
[11] 梁军, 朱庆杰. 流固耦合作用下流体对管道抗震性能的影响分析[J]. 世界地震工程, 2007, 23(3): 23-28.
LIANG Jun, ZHU Qingjie. Influence of liquid on earthquake resistance of pipeline under fluid-solid interaction[J]. World Earthquake Engineering, 2007, 23(3): 23-28.(in Chinese)
[12] 欧益宏, 李润, 袁广强, 等. 基于流固耦合的立式拱顶储罐油气爆炸数值模拟[J]. 振动与冲击, 2018, 37(22):236-242.
OU Yihong, LI Run, YUAN Guangqiang, et al. Numerical simulation on the gasoline-air mixture explosion in vertical dome roof oil tanks with consideration of the fluid-structure coupling effect[J]. Journal of Vibration and Shock, 2018, 37(22): 236-242.(in Chinese)
[13] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. New York:Wiley, 1995.
[14] 魏纲, 徐日庆, 黄斌. 长距离顶管管道的失稳分析[J]. 岩石力学与工程学报, 2005, 24(8):1427-1432.
WEI Gang, XU Riqing, HUANG Bin. Analysis of instability of long distance pipe jacking pipe[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1427-1432.(in Chinese)
[15] CRAGGS A. A finite element model for acoustically lined small rooms[J]. Journal of Sound and Vibration, 1986, 108(2): 327-337.
[16] 沈世杰, 王大龄, 王长祥. 给水排水工程结构设计手册[M]. 中国建筑工业出版社, 2007.
SHEN Shijie, WANG Daling, WANG Changxiang. Structural design manual for water supply and drainage engineering[M]. China Building Industry Press, 2007.(in Chinese)
[17] 张雄, 陆明万, 王建军. 任意拉格朗日-欧拉描述法研究进展[J]. 计算力学学报, 1997, 14(1): 91-102.
ZHANG Xiong, LU Mingwan, WANG Jianjun. Advances in the study of arbitrary lagrangian-euler description[J]. Chinese Journal of Computational Mechanics, 1997, 14(1): 91-102.(in Chinese)
[18] GB 50332—2002 给水排水工程管道结构设计规范[S].
GB 50332-2002 Structural design code for pipelines water supply and waste water engineering[S].(in Chinese)
[19] 朱文正. 多跨简支梁桥加固措施的抗震性能评估[J]. 深圳大学学报理工版, 2015, 32(2): 152-161.
ZHU Wenzheng. Seismic performance evaluation of retrofit measures for multi-span simple-supported bridges[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(2): 152-161.(in Chinese)
[20] 安韶, 王威, 马东辉. 城市供水管道性态抗震设计方法[J]. 北京工业大学学报, 2019, 45(5):36-43.
AN Shao, WANG Wei, MA Donghui, et al. Performance-based seismic design method of urban water supply pipe network[J]. Jornal of Beijing University of Technology, 2019, 45(5): 36-43.(in Chinese)
[21] 陈勇, 杨庆华. 埋深对地下管道抗震设计的影响[J]. 世界地震工程, 2015, 31(2): 275-280.
CHEN Yong, YANG Qinghua. Depth on seismic design of buried pipelines[J]. World Earthquake Engineering, 2015, 31(2): 275-280.(in Chinese)

相似文献/References:

[1]李翠梅,龚希博.基于动态规划的雨水泵站最优服务半径研究[J].深圳大学学报理工版,2016,33(4):388.[doi:10.3724/SP.J.1249.2016.04388]
 Li Cuimei and Gong Xibo.The optimal service radius of stormwater pump station based on dynamic programming method[J].Journal of Shenzhen University Science and Engineering,2016,33(3):388.[doi:10.3724/SP.J.1249.2016.04388]
[2]王丽娟,李晓宁,陈爱武,等.纳米ZnO的制备及其光催化降解印染废水[J].深圳大学学报理工版,2019,36(4):367.[doi:10.3724/SP.J.1249.2019.04367]
 WANG Lijuan,LI Xiaoning,CHEN Aiwu,et al.Preparation of nano-ZnO and its photocatalyticdegradation of dyeing wastewater[J].Journal of Shenzhen University Science and Engineering,2019,36(3):367.[doi:10.3724/SP.J.1249.2019.04367]

备注/Memo

备注/Memo:
Received:2019-07-16;Accepted:2019-12-25
Foundation:Postdoctoral Foundation of Hebei Province (B2013005003)
Corresponding author:Senior engineer WANG Lijuan.E-mail:wlj@hebut.edu.cn
Citation:WANG Lijuan,ZHANG Jiaming,ZHANG Haixiao,et al.Seismic response analysis of buried water supply pipeline based on fluid-solid interaction[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(3): 271-278.(in Chinese)
基金项目:河北省博士后基金资助项目(B2013005003)
作者简介:王丽娟(1972—),河北工业大学高级工程师、博士.研究方向:管道振动特性与市政管网抗震分析.E-mail:wlj@hebut.edu.cn
张家铭(1995—),河北工业大学硕士研究生.研究方向:管道抗震.E-mail:719042137@qq.com
王丽娟、张家铭为共同第一作者.
引文:王丽娟,张家铭,张海潇,等.基于流固耦合的埋地供水管道地震响应分析[J]. 深圳大学学报理工版,2020,37(3):271-278.
更新日期/Last Update: 2020-05-30