[1]田传俊.基于4阶正交拉丁方组实际基本密码系统设计[J].深圳大学学报理工版,2020,37(3):251-256.[doi:10.3724/SP.J.1249.2020.03251]
 TIAN Chuanjun.Design of practical basic cryptosystem based on four-order orthogonal Latin square group[J].Journal of Shenzhen University Science and Engineering,2020,37(3):251-256.[doi:10.3724/SP.J.1249.2020.03251]
点击复制

基于4阶正交拉丁方组实际基本密码系统设计()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第3期
页码:
251-256
栏目:
电子与信息科学
出版日期:
2020-05-20

文章信息/Info

Title:
Design of practical basic cryptosystem based on four-order orthogonal Latin square group
文章编号:
202003006
作者:
田传俊
深圳大学电子与信息工程学院,广东深圳518060
Author(s):
TIAN Chuanjun
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
信息安全技术 密码学 保密通信系统 流密码算法 4阶正交拉丁方组 基本实际密码系统
Keywords:
technology of information security cryptology secure communication system stream cipher algorithm four-order orthogonal Latin square group basic practical cipher system
分类号:
TN918
DOI:
10.3724/SP.J.1249.2020.03251
文献标志码:
A
摘要:
研究4阶正交拉丁组所确定的基本理论密码系统的实际模型设计方法.基于计算机中简单易实现的几种运算,提出4阶正交拉丁方组非统一代数式的构造方法,并给出基本实际密钥空间K长度分别为2、3和4 bit时的实际基本密钥空间和统一形式的非线性加解密变换的设计方法.所设计的3种非线性基本实际密码系统不同于现有常用的基于模加法运算所设计的线性基本密码系统,可以将它们作为今后设计新流密码算法时所用的基本密码系统.
Abstract:
We propose the construction methods with non-uniform formulae for a group of four-order orthogonal Latin squares and give the methods of designing three basic practical key spaces with different bit lengths of 2, 3 and 4 bits and the corresponding encryption and decryption transformations by using several simple and easy operations in computers. The designed nonlinear basic practical cipher systems, which are different from the commonly used linear cryptosystems based on modular addition operation, can be used as the basic cryptosystem to design new stream cipher cryptosystems in the future.

参考文献/References:

[1] SHANNON C E. Communication theory of secrecy system[J]. Bell System Technical Journal, 1949, 28:656-715.
[2] 章照止.现代密码学基础[M].北京:北京邮电大学出版社,2004.
ZHANG Zhaozhi. Fundamentals of modern cryptography[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2004.(in Chinese)
[3] 丁存生,肖国镇.流密码学及其应用[M].北京:国防工业出版社,1994.
DING Cunsheng, XIAO Guozhen. Stream cryptography and its application[M]. Beijing: National Defense Industry Press, 1994.(in Chinese)
[4] SUDEEPTHI G, DHAVALA S K, KUMAR G R. Perfect secrecy designs for contracted rule mining[J]. International Journal of Advanced Research in Science and Technology, 2015, 4(3), 348-352.
[5] 亢保元,王育明.完善保密密码体制的条件与设计[J].通信学报,2004,25(2):168-173.
HANG Baoyuan, WANG Yuming. On the condition and design of perfect secrecy cryptosystem[J]. Journal of China Institute of Communications, 2004, 25(2): 168-173.(in Chinese)
[6] 田传俊.密钥非均匀分布的完善保密通信系统[J].通信学报,2018,39(11):1-9.
TIAN Chuanjun. Perfect secrecy cryptosystem with nonuniform distribution of keys[J]. Journal on Communications, 2018, 39(11): 1-9.(in Chinese)
[7] 田传俊.频率不相关性及其在单钥密码系统中的应用[J].深圳大学学报理工版,2015,32(1):32-39.
TIAN Chuanjun. Frequency irrelevance and its applications in one-key cryptosystems[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 32-39.(in Chinese)
[8] 张斌,徐超,冯登国.流密码的设计与分析:回顾、现状与展望[J].密码学报,2016, 3(6):527-545.
ZHANG Bin, XU Chao, FENG Dengguo. Design and analysis of stream ciphers: past, present and future directions[J]. Journal of Cryptologic Research, 2016, 3(6): 527-545.(in Chinese)
[9] ZUC算法研制组.ZUC-256流密码算法[J].密码学报,2018,5(2):167-179.
DESIGN TEAM. ZUC-256 stream cipher[J]. Journal of Cryptologic Research, 2018, 5(2): 167-179.(in Chinese)

备注/Memo

备注/Memo:
Received:2019-04-24;Accepted:2019-07-23
Foundation:National Natural Science Foundation of China (61070252)
Corresponding author:Professor TIAN Chuanjun. E-mail: tiancj@szu.edu.cn
Citation:TIAN Chuanjun. Design of practical basic cryptosystem based on four-order orthogonal Latin square group[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(3): 251-256.(in Chinese)
基金项目:国家自然科学基金资助项目(61070252)
作者简介:田传俊(1964—),深圳大学教授.研究方向:伪随机性理论和密码算法.E-mail:tiancj@szu.edu.cn
引文:田传俊.基于4阶正交拉丁方组实际基本密码系统设计[J]. 深圳大学学报理工版,2020,37(3):251-256.
更新日期/Last Update: 2020-05-30