[1]李顺群,张翻,王彦洋,等.冻土导热系数骨架模型研究[J].深圳大学学报理工版,2020,37(2):165-172.[doi:10.3724/SP.J.1249.2020.02165]
 LI Shunqun,ZHANG Fan,et al.Study of thermal conductivity model of frozen soil skeleton[J].Journal of Shenzhen University Science and Engineering,2020,37(2):165-172.[doi:10.3724/SP.J.1249.2020.02165]
点击复制

冻土导热系数骨架模型研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第2期
页码:
165-172
栏目:
土木建筑工程
出版日期:
2020-03-16

文章信息/Info

Title:
Study of thermal conductivity model of frozen soil skeleton
文章编号:
202002008
作者:
李顺群12张翻12王彦洋3夏锦红4陈之祥5
1)天津城建大学土木工程学院,天津 300384
2)天津市软土特性与工程环境重点实验室,天津 300384
3)天津市建设工程技术研究所,天津 300204
4)新乡学院土木工程与建筑学院,河南新乡 453003
5)大连理工大学工业装备结构分析国家重点实验室,辽宁大连 116085
Author(s):
LI Shunqun1 2 ZHANG Fan1 2 WANG Yanyang3 XIA Jinhong4 and CHEN Zhixiang5
1) School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, P.R.China
2) Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin 300384, P.R.China
3) Tianjin Construction Engineering Technology Research Institute, Tianjin 300204, P.R.China
4) School of Civil Engineering and Architecture, Xinxiang University, Xinxiang 453003, Henan Province, P.R.China
5) State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116085, Liaoning Province, P.R.China
关键词:
岩土工程冻土导热系数土骨架冰骨架复合传热模型未冻水
Keywords:
geotechnical engineering frozen soil thermal conductivity soil skeleton ice skeleton composite heat transfer model unfrozen water
分类号:
TU445
DOI:
10.3724/SP.J.1249.2020.02165
文献标志码:
A
摘要:
为研究冻结过程中土、水和冰三者之间的相互关系,建立了基于冻土骨架的导热系数计算模型.骨架模型由土骨架和冰骨架,以及土、水、冰三相之间的相互关系构成.当温度降低至起始冻结温度时,远离土颗粒的孔隙水最先冻结成冰核;随温度降低,冰核逐渐扩张形成贯通的孔隙冰骨架,冻土中的未冻水则存在于土骨架与冰骨架之间.根据球缺接触的土骨架理想化模型,提出了土骨架与冰骨架相互独立,土骨架与未冻水、冰骨架与未冻水相结合的混合传热模式,建立了饱和冻土的复合传热模型及冻土的导热系数模型,计算得到0 ℃以下冻土的导热系数理论值. 分别将导热系数理论值与Johansen法计算值、混合流法计算值和瞬态法的测试结果进行对比,结果表明,复合传热法的计算值处于Johansen法和混合流法的计算值之间,其整体计算精度优于Johansen法,且计算值与实测值相对误差在10%以内.
Abstract:
In order to study the relationship among soil, water and ice in the thermal conductivity of soil during freezing, we establish the thermal conductivity calculation model based on frozen soil skeleton. The skeleton model consists of the soil skeleton and the ice skeleton, as well as the relationship among the three phases of soil, water and ice. When the temperature decreases to the initial freezing temperature, the pore water far away from the soil particles freezes into ice nuclei first. With the decrease of temperature, the ice core gradually expands to form a perforated pore ice skeleton. The unfrozen water in the frozen soil exists between the soil skeleton and the ice skeleton. According to the ideal model of spherical contact, we put forward the hybrid heat transfer mode which is composed of soil skeleton and ice skeleton, which are independent of each other, soil skeleton mixed with unfrozen water and ice skeleton mixed with unfrozen water. We also establish the three-phase composite heat transfer model of soil, water and ice based on saturated frozen soil and the thermal conductivity model of frozen soil. According to the model, we can obtain the thermal conductivity of frozen soil below 0 ℃. Compared with the calculated values of Johansen method and the mixed flow method, the results of transient method show that the calculated value of composite heat transfer method is larger than the measured value in the range of -5~0 ℃, the reason is that the pore ice skeleton is not mature. When the temperature is below -5 ℃, the calculated value of the composite heat transfer method is larger than the measured value, which is due to the hydrothermal migration in the frozen soil. The calculated values of the composite heat transfer method are between those of the Johansen method and those of the mixed flow method. The overall calculation accuracy is better than that of the Johansen method, and the relative difference between the calculated values and the measured values is less than 10%.

参考文献/References:

[1] 何瑞霞, 金会军, 赵淑萍, 等. 冻土导热系数研究现状及进展[J]. 冰川冻土, 2018, 40(1): 116-126.
HE Ruixia, JIN Huijun, ZHAO Shuping, et al. Review of status and progress of the study in thermal conductivity of frozen soil[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 116-126.(in Chinese)
[2] 陈之祥, 李顺群, 夏锦红, 等. 基于紧密排列土柱模型的冻土热参数计算[J]. 深圳大学学报理工版, 2017, 34(4): 393-399.
CHEN Zhixiang, LI Shunqun, XIA Jinhong, et al. Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 393-399.(in Chinese)
[3] 夏锦红, 陈之祥, 夏元友, 等. 不同负温条件下冻土导热系数的理论模型和试验验证[J]. 工程力学, 2018, 35(5): 109-117.
XIA Jinhong, CHEN Zhixiang, XIA Yuanyou, et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics, 2018, 35(5): 109-117.(in Chinese)
[4] COSENZA P, GUERIN R, TABBAGH A. Relationship between thermal conductivity and water content of soils using numerical modelling[J]. European Journal of Soil Science, 2010, 54(3): 581-588.
[5] JOHANSEN O. Thermal conductivity of soils[D]. Norway: Trondheim University, 1975.
[6] 原喜忠, 李宁, 赵秀云, 等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学, 2010, 31(9): 2689-2694.
YUAN Xizhong, LI Ning, ZHAO Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9): 2689-2694.(in Chinese)
[7] 于珊, 李顺群, 冯慧强. 土的导热系数与其干密度、饱和度和温度的关系[J]. 天津城建大学学报, 2015, 21(3): 172-176.
YU Shan, LI Shunqun, FENG Huiqiang. Relationship among soil’s thermal conductivity, dry density, saturation and temperature[J]. Journal of Tianjin Chengjian University, 2015, 21(3): 172-176.(in Chinese)
[8] LEHMANN P, STHLI M, PAPRITZ A, et al. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3): 313-332.
[9] 邵龙潭, 郭晓霞. 有效应力新解[M]. 北京: 中国水利水电出版社, 2014.
SHAO Longtan, GUO Xiaoxia. New solution to effective stress[M]. Beijing: China Water Conservancy and Hydropower Press, 2014.(in Chinese)
[10] GAVRIL’EV R I. Model for calculating the thermal conductivity of soils with their genesis taken into account[J]. Journal of Engineering Physics & Thermophysics, 1992, 62(1): 68-76.
[11] 郑星, 敖大华, 李裕忠, 等. 砂卵石粗粒土颗粒外形特征测量与评定初探[J]. 岩土力学, 2018, 39(5): 1805-1810.
ZHENG Xing, AO Dahua, LI Yuzhong, et al. A preliminary study of measurement and evaluation of geometry characteristics of coarse gravel[J]. Rock and Soil Mechanics, 2018, 39(5): 1805-1810.(in Chinese)
[12] 路建国, 张明义, 张熙胤, 等. 冻土水热力耦合研究现状及进展[J]. 冰川冻土, 2017, 39(1): 102-111.
LU Jianguo, ZHANG Mingyi, ZHANG Xiyin, et al. Review of the coupled hydro-thermo-mechanical interaction of frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 102-111.(in Chinese)
[13] 谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572.
TAN Long, WEI Changfu, TIAN Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572.(in Chinese)
[14] CHAI Mingtang, ZHANG Jianming, ZHANG Hu, et al. A method for calculating unfrozen water content of silty clay with consideration of freezing point[J]. Applied Clay Science, 2018, 161: 474-481.
[15] 徐学祖, 王家澄, 张立新, 等. 冻土物理学[M]. 北京: 科学出版社, 2001.
XU Xuezu, WANG Jiacheng, ZHANG Lixin, et al. Frozen soil physics[M]. Beijing: China Science Press, 2001.(in Chinese)
[16] 李顺群, 陈之祥, 夏锦红, 等. 冻土导热系数的聚合模型研究及试验验证[J]. 中国公路学报, 2018, 31(8): 39-46.
LI Shunqun, CHEN Zhixiang, XIA Jinhong, et al. Aggregation model research and experimental verification of frozen soil thermal conductivity[J]. China Journal of Highway and Transport, 2018, 31(8): 39-46.(in Chinese)
[17] SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations[J]. Journal of Geophysical Research, 1971, 76(14): 3391-3401.

相似文献/References:

[1]郭彪,韩颖,龚晓南,等.考虑横竖向渗流的砂井地基非线性固结分析[J].深圳大学学报理工版,2010,27(4):459.
 GUO Biao,HAN Ying,GONG Xiao-nan,et al.Nonlinear consolidation behavior of sand foundation with both horizontal and vertical drainage[J].Journal of Shenzhen University Science and Engineering,2010,27(2):459.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(2):389.
[3]张永兴,陈林.地震作用下挡土墙主动土压力分布[J].深圳大学学报理工版,2012,29(No.1(001-094)):31.[doi:10.3724/SP.J.1249.2012.01031]
 ZHANG Yong-xing and CHEN Lin.Seismic active earth pressure of retaining wall[J].Journal of Shenzhen University Science and Engineering,2012,29(2):31.[doi:10.3724/SP.J.1249.2012.01031]
[4]刘顺青,洪宝宁,方庆军,等.高液限土和红黏土的水敏感性研究[J].深圳大学学报理工版,2013,30(No.1(001-110)):78.[doi:10.3724/SP.J.1249.2013.01078]
 Liu Shunqing,Hong Baoning,et al.Study on the water sensitivity of high liquid limit soil and red clay[J].Journal of Shenzhen University Science and Engineering,2013,30(2):78.[doi:10.3724/SP.J.1249.2013.01078]
[5]李凡,李雪峰.两条雁行预制裂隙贯通机制的细观数值模拟[J].深圳大学学报理工版,2013,30(No.2(111-220)):190.[doi:10.3724/SP.J.1249.2013.02190]
 Li Fan and Li Xuefeng.Micro-numerical simulation on mechanism of fracture coalescence between two pre-existing flaws arranged in echelon[J].Journal of Shenzhen University Science and Engineering,2013,30(2):190.[doi:10.3724/SP.J.1249.2013.02190]
[6]王杏杏,潘林,高凌霞,等.黄土微结构的谱系聚类分析[J].深圳大学学报理工版,2016,33(4):394.[doi:10.3724/SP.J.1249.2016.04394]
 Wang Xingxing,Pan Lin,Gao Lingxia,et al.Pedigree clustering analysis of the microstructure of loess[J].Journal of Shenzhen University Science and Engineering,2016,33(2):394.[doi:10.3724/SP.J.1249.2016.04394]
[7]杨果林,龚铖,黄玮.GFRP桩在泥炭质土中静压挤土的效应试验[J].深圳大学学报理工版,2016,33(5):484.[doi:10.3724/SP.J.1249.2016.05484]
 Yang Guolin,Gong Cheng,and Huang Wei.Experiments of soil compacting effect of GFRP pile in peaty soil[J].Journal of Shenzhen University Science and Engineering,2016,33(2):484.[doi:10.3724/SP.J.1249.2016.05484]
[8]林署炯,冉孟胶,陈剑尚,等.填埋固化污泥土的压缩过程及微结构变化[J].深圳大学学报理工版,2017,34(2):147.
 Lin Shujiong,Ran Mengjiao,Chen Jianshang,et al. Compression process of the landfilled solidified sludge soil and its microstructure changes[J].Journal of Shenzhen University Science and Engineering,2017,34(2):147.
[9]肖成志,李晓峰,张静娟.压实度和含水率对含砂粉土性质的影响[J].深圳大学学报理工版,2017,34(5):501.[doi:10.3724/SP.J.1249.2017.05501]
 Xiao Chengzhi,Li Xiaofeng,and Zhang Jingjuan.Effect of compaction degree and water content on performance of sandy silt[J].Journal of Shenzhen University Science and Engineering,2017,34(2):501.[doi:10.3724/SP.J.1249.2017.05501]
[10]陈峰.早龄期玄武岩纤维水泥土的强度及变形特性[J].深圳大学学报理工版,2017,34(6):611.[doi:10.3724/SP.J.1249.2017.06611]
 Chen Feng.Strength and deformation characteristics of basalt fiber cement-soil at early age[J].Journal of Shenzhen University Science and Engineering,2017,34(2):611.[doi:10.3724/SP.J.1249.2017.06611]
[11]陈之祥,李顺群,夏锦红,等.基于紧密排列土柱模型的冻土热参数计算[J].深圳大学学报理工版,2017,34(4):393.[doi:10.3724/SP.J.1249.2017.04393]
 Chen Zhixiang,Li Shunqun,Xia Jinhong,et al.Calculation of thermal parameters of frozen soil based on the closely spaced soil column model[J].Journal of Shenzhen University Science and Engineering,2017,34(2):393.[doi:10.3724/SP.J.1249.2017.04393]

备注/Memo

备注/Memo:
Received:2019-06-10;Accepted:2019-08-05
Foundation:National Natural Science Foundation of China (41877251); Independent Research Project of National Key Laboratory Funding (S18406); Tianjin Science and Technology Support Key Project (19YFZCSF00820)
Corresponding author:Professor LI Shunqun. E-mail: lishunqun@sina.com
Citation:LI Shunqun,ZHANG Fan,WANG Yanyang,et al. Study of thermal conductivity model of frozen soil skeleton[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(2): 165-172.(in Chinese)
基金项目:国家自然科学基金资助项目(41877251);国家重点实验室自主研究课题经费资助项目(S18406);天津市科技支撑重点资助项目(19YFZCSF00820)
作者简介:李顺群(1971—), 天津城建大学教授.研究方向:土强度与本构关系,隧道和地下工程冻结法施工.E-mail:lishunqun@sina.com
引文:李顺群,张翻,王彦洋,等.冻土导热系数骨架模型研究[J]. 深圳大学学报理工版,2020,37(2):165-172.
更新日期/Last Update: 2020-03-30