参考文献/References:
[1] 陈艳雷.基于逆向工程的扫描点云数据预处理技术研究[D].郑州:河南工业大学,2018.
CHEN Yanlei. Research on scanning point cloud data preprocessing technology based on reverse engineering[D]. Zhengzhou: Henan University of Technology, 2018.(in Chinese)
[2] BU Shuhui, LIU Zhenbao, HAN Junwei, et al. Learning high-level feature by deep belief networks for 3-D model retrieval and recognition[J]. IEEE Transactions on Multimedia, 2014, 16(8): 2154-2167.
[3] XIE Jin, DAI Guoxian, ZHU Fang, et al. Deepshape: deep-learned shape descriptor for 3D shape retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1335-1345.
[4] SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]// IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 945-953.
[5] SHI Baoguang, BAI Song, ZHOU Zhichao, et al. Deep-Pano: deep panoramic representation for 3-D shape recognition[J]. IEEE Signal Processing Letters, 2015, 22(12): 2339-2343.
[6] SINHA A, BAI Jing, RAMANI K. Deep learning 3D shape surfaces using geometry images[C]// The 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 223-240.
[7] WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1912-1920.
[8] XU Xu, TODOROVIC S. Beam search for learning a deep convolutional neural network of 3D shapes[C]// The 23rd International Conference on Pattern Recognition. Cancun, Mexico: IEEE, 2016:3506-3511.
[9] QI C R,SU Hao, KAICHUN M, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 77-85.
[10] QI C R , YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems 30. California, USA:[s.n.], 2017: 5105-5114.
[11] BENTLEY J L, FRIEDMAN J H. Data structures for range searching[J]. ACM Computing Surveys, 1979, 11(4):397-409.
[12] CHENG Dongcai, MENG Gaofeng, XIANG Shiming, et al. FusionNet: edge aware deep convolutional networks for semantic segmentation of remote sensing harbor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5769-5783.
[13] FRANCIS E, THEODORA K, ALEXANDER H, et al. Exploring patial context for 3D semantic segmentation of point clouds[C]// IEEE International Conference on Computer Vision Workshop. Venice, Italy: IEEE, 2017: 716-724.
[14] BOULCH A, SAUX B L, AUDEBERT N. Unstructured point cloud semantic labeling using deep segmentation networks[C]// Eurographics Workshop on 3D Object Retrieval. Lyon, France: The Eurographics Association, 2017: 17-24.
[15] LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation[C]// Proceedings of the 17th International Conference on Computer Analysis of Images and Patterns. Ystad, Sweden: Springer, Cham, 2017: 95-107.
相似文献/References:
[1]陈玉佳,姜波.基于小波神经网络的加工番茄产量预测模型[J].深圳大学学报理工版,2015,32(5):546.[doi:10.3724/SP.J.1249.2015.05546]
Chen Yujia and Jiang Bo.A wavelet neural network model for processing tomato yield forecasting[J].Journal of Shenzhen University Science and Engineering,2015,32(1):546.[doi:10.3724/SP.J.1249.2015.05546]
[2]孙文赟,宋昱,陈昌盛.基于卷积-反卷积网络的正交人脸特征学习算法[J].深圳大学学报理工版,2020,37(5):474.[doi:10.3724/SP.J.1249.2020.05474]
SUN Wenyun,SONG Yu,and CHEN Changsheng.An orthogonal facial feature learning method based on convolutional-deconvolutional network[J].Journal of Shenzhen University Science and Engineering,2020,37(1):474.[doi:10.3724/SP.J.1249.2020.05474]
[3]于军琪,王佳丽,赵安军,等.基于AP相似日选取与FISOA-RBF的短期负荷预测[J].深圳大学学报理工版,2021,38(3):315.[doi:10.3724/SP.J.1249.2021.03315]
YU Junqi,WANG Jiali,ZHAO Anjun,et al.Short-term load forecasting based on AP similar day and improved SOA-RBF[J].Journal of Shenzhen University Science and Engineering,2021,38(1):315.[doi:10.3724/SP.J.1249.2021.03315]
[4]杨珺,佘佳丽,刘艳珍.基于深度置信网络的时间序列预测[J].深圳大学学报理工版,2019,36(6):718.[doi:10.3724/SP.J.1249.2019.06718]
YANG Jun,SHE Jiali,and LIU Yanzheng.Time series prediction based on deep confidence networks[J].Journal of Shenzhen University Science and Engineering,2019,36(1):718.[doi:10.3724/SP.J.1249.2019.06718]