[1]贾志成,郑笑,郭艳菊,等.改进鲸群优化子空间匹配追踪的稀疏解混算法[J].深圳大学学报理工版,2020,37(1):63-71.[doi:10.3724/SP.J.1249.2020.01063]
 JIA Zhicheng,ZHENG Xiao,GUO Yanju,et al.Sparse unmixing using the improved whale optimized subspace matching pursuit algorithm[J].Journal of Shenzhen University Science and Engineering,2020,37(1):63-71.[doi:10.3724/SP.J.1249.2020.01063]
点击复制

改进鲸群优化子空间匹配追踪的稀疏解混算法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第1期
页码:
63-71
栏目:
电子与信息科学
出版日期:
2020-01-08

文章信息/Info

Title:
Sparse unmixing using the improved whale optimized subspace matching pursuit algorithm
文章编号:
202001010
作者:
贾志成1郑笑1郭艳菊1陈雷2 3
1) 河北工业大学电子信息工程学院,天津 300401
2) 天津大学精密仪器与光电子工程学院,天津 300072
3) 天津商业大学信息工程学院,天津 300134
Author(s):
JIA Zhicheng1 ZHENG Xiao1 GUO Yanju1 and CHEN Lei2 3
1) School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, P.R.China
2) School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, P.R.China
3) School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, P.R.China
关键词:
计算机图像处理高光谱图像稀疏解混子空间匹配追踪算法冗余端元仿生智能优化鲸群优化算法
Keywords:
computer image processing hyperspectral images sparse unmixing subspace matching pursuit algorithm redundant endmembers swarm intelligence optimization whale optimization algorithm
分类号:
TN911.7
DOI:
10.3724/SP.J.1249.2020.01063
文献标志码:
A
摘要:
为了提升高光谱图像的稀疏解混精度,提出一种基于改进鲸群优化算法的子空间匹配追踪(improved whale optimized subspace matching pursuit, IWOSMP)的稀疏解混算法.对鲸群优化算法进行改进,通过引入非线性种群控制参数和进化策略,提高鲸群优化算法的收敛速度和收敛精度,基于子空间匹配追踪算法,以约束稀疏回归为目标函数,利用改进的鲸群优化算法对已知端元集求解丰度系数.以重构误差最小为标准,通过最大程度地去除系数较小的冗余端元,提高子空间匹配追踪算法的端元提取的精确度,进一步提高了高光谱图像的解混精度.合成图像实验和真实遥感图像实验表明,IWOSMP能有效去除大量的冗余端元,且解混精度更高.
Abstract:
This paper proposes a whale optimized subspace matching pursuit algorithm to improve the precision of sparse unmixing of hyperspectral data. The proposed algorithm modifies the traditional whale group optimization algorithm by introducing the nonlinear population control parameters and evolution strategy and thus improves the convergence speed and convergence precision of the whale cluster optimization algorithm. Based on the improved subspace matching pursuit algorithm, the new algorithm uses the whale optimization algorithm to solve the abundance coefficients of the known end members, where the objective function is modeled as a constrained sparse regression. In order to improve the precision of the subspace matching pursuit algorithm, the minimum reconstruction error is taken as the criterion and the redundant end members with smaller coefficients are removed to the greatest extent. The simulation and real data experiments show that the proposed algorithm can effectively remove the redundant endmembers and has a higher precision of unmixing.

参考文献/References:

[1] 童庆禧,张兵,郑兰芬.高光谱遥感[M].北京:高等教育出版社,2006.
TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral remote sensing[M]. Beijing: Higher Education Press, 2006.(in Chinese)
[2] BIOUCAS-DIAS J M, PLAZA A. An overview on hyperspectral unmixing: geometrical, statistical, and sparse regression based approaches[C]// IEEE Intemational Geoscience and Remote Sensing Symposium. Vancouver, Canada: IEEE, 2011:1135-1138.
[3] 李殊瑶.基于结构稀疏表示的高光谱图像解混[D].西安:西安电子科技大学,2015.
LI Shuyao. Hyperspectral image unmixing via structural sparse representation[D]. Xi’an: Xidian University, 2015.(in Chinese)
[4] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transaction on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
[5] ZHANG Shaoquan, LI Jun, LI Hengchao, et al. Spectral-spatial weighted sparse regression for hyperspectral image unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3265-3276.
[6] FAN Wenyi, HU Baoxin, MILLER J, et al. Comparative study between a new nonlinear model and common linear model for analyzing laboratory simulated forest hyperspectral data[J]. International Journal of Remote Sensing, 2009, 30(11): 2951-2962.
[7] MALLAT S G, ZHANG Zzhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transaction on Signal Processing, 1993, 41(12):3397-3415.
[8] BRUCKSTEIN A M, ELAD M, ZIBULEVSKY M. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations[J]. IEEE Transaction on Information Theory, 2008, 54(11): 4813-4820.
[9] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[10] TROPP J A, GILBERT A C, STRAUSS M J. Algorithms for simultaneous sparse approximation. part I: greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588.
[11] SHI Zhenwei, TANG Wei, DUREN Zhana, et al. Subspace matching pursuit for sparse unmixing of hyperspectral data[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(6): 3256-3274.
[12] KONG Fanqiang, GUO Wenjun, LI Yunsong, et al. Backtracking-based simultaneous orthogonal matching pursuit for sparse unmixing of hyperspectral data[J]. Mathematical Problems in Engineering, 2015, 2015: 842017.
[13] 肖健钰.基于稀疏表示的高光谱图像解混算法研究[D].哈尔滨:哈尔滨工程大学,2015.
XIAO Jianyu. Hyperspectral imagery unmixing algorithm based on sparse representation[D]. Harbin: Harbin Engineering University, 2015.(in Chinese)
[14] LI Dan, ZHANG Chunmei, ZHOU Qianqi, et al. Subspace matching pursuit with Dice coefficient for sparse unmixing of hyperspectral data[C]// IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016: 6585-6588.
[15] ZHONG Yanfei, ZHAO Lin, ZHANG Liangpei. An adaptive differential evolution endmember extraction algorithm for hyperspectral remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1061-1065.
[16] ZHONG Liang, LUO Wenfei, GAO Lianru. A particle swarm optimization algorithm for unmixing the polynomial post-nonlinear mixing model[C]// The 9th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics. Datong, China: IEEE, 2017: 596-600.
[17] 陈雷, 郭艳菊, 葛宝臻.基于微分搜索的高光谱图像非线性解混算法[J].电子学报,2017,45(2):337-345.
CHEN Lei, GUO Yanju, GE Baozhen. Nonlinear unmixing of hyperspectral images based on differential search algorithm[J]. Acta Electronica Sinica, 2017, 45(2): 337-345.(in Chinese)
[18] 陈雷,甘士忠,孙茜.基于回溯优化的非线性高光谱图像解混[J].红外与激光工程,2017,46(6):225-232.
CHEN Lei, GAN Shizhong, SUN Qian. Nonlinear unmixing using backtracking optimization for hyperspectral images[J]. Infrared and Laser Engineering, 2017, 46(6): 225-232.(in Chinese)
[19] QUAN Jianing, KANG Zhilong, CHEN Lei, et al. Abundance estimation of crossover double particle swarms optimization for hyperspectral remote sensing imagery[J]. International Journal of Remote Sensing, 2018, 38(23): 1-25.
[20] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[21] KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of ICNN’95 IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 2011: 1942-1948.
[22] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248.
[23] KAVEH A, FARHOUDI N. A new optimization method: Dolphin echolocation[J]. Advances in Engineering Software, 2013, 59(5): 53-70.
[24] 高卫峰.人工蜂群算法及其应用的研究[D].西安:西安电子科技大学,2013.
GAO Weifeng.Artificial bee colony algorithm and its applications[D]. Xi’an: Xidian University, 2013.(in Chinese)
[25] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47.
[26] 张梅凤,邵诚.多峰函数优化的生境人工鱼群算法[J].控制理论与应用,2008,25(4):773-776.
ZHANG Meifeng, SHAO Cheng. Niche artificial fish swarm algorithm for multimodal function optimization[J]. Control Theory & Application, 2008, 25(4): 773-776.(in Chinese)
[27] BIOUCAS-DIAS J M, FIGUEIREDO M A T. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing[C]// The 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Reykjavik, Iceland: IEEE, 2010: 1-4.
[28] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Total variation spatial regularization for sparse hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4484-4502.
[29] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Trans on Geoscience and Remote Sensing, 2013, 52(1): 341-354.
[30] QUINTANO C, SHIMABUKURO Y, PEREIRA G. Spectral unmixing[J]. International Journal of Remote Sensing, 2012, 33(17): 5307-5340.

相似文献/References:

[1]殷夫,纪震,周家锐,等.PET/CT图像质量主观评价与感知模型[J].深圳大学学报理工版,2015,32(2):205.[doi:10.3724/SP.J.1249.2015.02205]
 Yin Fu,Ji Zhen,Zhou Jiarui,et al.Subjective assessment and perception model of PET/CT image quality[J].Journal of Shenzhen University Science and Engineering,2015,32(1):205.[doi:10.3724/SP.J.1249.2015.02205]
[2]郭美钦,江健民.人脸图像风格迁移的改进算法[J].深圳大学学报理工版,2019,36(3):230.[doi:10.3724/SP.J.1249.2019.03230]
 GUO Meiqin and JIANG Jianmin.Spatially-robust image style transfer for headshot portraits[J].Journal of Shenzhen University Science and Engineering,2019,36(1):230.[doi:10.3724/SP.J.1249.2019.03230]

备注/Memo

备注/Memo:

Received:2019-02-27;Accepted:2019-04-09
Foundation:National Nature Science Foundation of China (61401307);China Postdoctoral Science Foundation (2014M561184);Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC17100)
Corresponding author:Professor JIA Zhicheng. E-mail: jiazc@hebut.edu.cn.Lecture GUO Yanju. E-mail: guoyanju@163.com

Citation:JIA Zhicheng, ZHENG Xiao, GUO Yanju, et al. Sparse unmixing using the improved whale optimized subspace matching pursuit algorithm[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(1): 63-71.(in Chinese)
基金项目:国家自然科学基金资助项目(61401307);中国博士后科学基金资助项目(2014M561184);天津市应用基础与前沿技术研究计划资助项目(15JCYBJC17100)
作者简介:贾志成(1957—),河北工业大学教授.研究方向:高光谱图像处理与仿生智能计算.E-mail: jiazc@hebut.edu.cn
郑笑(1993—), 河北工业大学硕士研究生.研究方向: 高光谱图像处理与仿生智能计算.
E-mail: zhengxiao_606@163.com
贾志成、郑 笑为共同第一作者.
引文:贾志成,郑笑,郭艳菊,等.改进鲸群优化子空间匹配追踪的稀疏解混算法[J]. 深圳大学学报理工版,2020,37(1):63-71.

更新日期/Last Update: 2020-01-30