[1]杨芮,等.基于布尔网络的低功耗物理随机数发生器[J].深圳大学学报理工版,2020,37(1):51-56.[doi:10.3724/SP.J.1249.2020.01051]
 YANG Rui,HOU Erlin,et al.Low-power physical random number generator using Boolean networks[J].Journal of Shenzhen University Science and Engineering,2020,37(1):51-56.[doi:10.3724/SP.J.1249.2020.01051]
点击复制

基于布尔网络的低功耗物理随机数发生器()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第1期
页码:
51-56
栏目:
光电工程
出版日期:
2020-01-08

文章信息/Info

Title:
Low-power physical random number generator using Boolean networks
文章编号:
202001008
作者:
杨芮1 2侯二林1 2刘海芳1 2龚利爽1 2王云才1 2 3张建国1 2
1) 太原理工大学物理与光电工程学院,山西太原 030024
2) 太原理工大学新型传感器与智能控制教育部和山西省重点实验室,山西太原 030024
3) 广东工业大学信息工程学院,广东广州 510006
Author(s):
YANG Rui1 2 HOU Erlin1 2 LIU Haifang1 2 GONG Lishuang1 2 WANG Yuncai1 2 3 and ZHANG Jianguo1 2
1) College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
2) Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, P.R.China
3) School of Information and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong Province, P.R.China
关键词:
物理电子学保密通信布尔网络混沌物理随机数发生器现场可编程逻辑阵列
Keywords:
physical electronics secret communication Boolean networks chaos physical random number generator field programmable gate array
分类号:
TN918
DOI:
10.3724/SP.J.1249.2020.01051
文献标志码:
A
摘要:
利用布尔网络设计一种低功耗物理随机数发生器,熵源部分为12个二输入逻辑门相互耦合及1个反向器构成的自治布尔网络,并从时域、频域及计算最大李雅普诺夫指数等方面分析其产生信号的混沌特性.经过对该混沌信号采样和量化,生成熵值为1 bit/sample、实时产生速率为100 Mbit/s的随机序列.整个物理随机数发生器在现场可编程逻辑阵列(field programmable gate array, FPGA)平台上实现,硬件逻辑资源消耗少. 美国国家标准与技术研究院的随机数测试程序结果表明,产生的随机数具有良好的随机统计特性.该设计可应用于高速加密系统、保密通信等信息安全领域.
Abstract:
In order to reduce the power consumption of random number generators (RNGs), a novel physical random number generator (physical-RNG) using Boolean networks is presented. The entropy source is an autonomous Boolean network consisting of 12 two-input logic gates and a inverter, the chaotic characteristics of the generated signal are verified by time domain analysis, frequency domain analysis, and the computation of the maximum Lyapunov exponent. By sampling and quantizing chaotic signals, the physical random number with entropy of 1 bit/sample and real time rate 100 Mbit/s is generated. The physical-RNG is implemented on a field programmable logic array (FPGA) platform with low consumption of hardware logic resources. The NIST SP 800-22 test results indicate that the generated random number has good random characteristics. The design can be applied in the information security fields such as high-speed encryption systems and secure communications.

参考文献/References:

[1] QI Bing, CHI Y M, LO H K, et al. High-speed quantum random number generation by measuring phase noise of a single-mode laser[J]. Optics Letters, 2010, 35(3): 312-314.
[2] LI Pu, WANG Yuncai, ZHANG Jianzhong. All-optical fast random number generator[J]. Optics Express, 2010, 18(19): 20360-20369.
[3] WANG Anbang, LI Pu, ZHANG Jianguo, et al. 4.5 Gbps high-speed real-time physical random bit generator[J]. Optics Express, 2013, 21(17): 20452-20462.
[4] KWON O, CHO Y W, KIM Y H. Quantum random number generator using photon-number path entanglement[J]. Applied Optics, 2009, 48(9): 1774-1778.
[5] PETRIE C S, CONNELLY A. A noise-based IC random number generator for applications in cryptography[J]. IEEE Transactions on Circuits & Systems I: Fundamental Theory & Applications, 2000, 47(5): 615-621.
[6] GALAJDA M P. Chaos-based true random number generator embedded in a mixed-signal reconfigurable hardware[J]. Journal of Electrical Engineering, 2006, 57(4): 218-225.
[7] BUCCI M, GERMANI L, LUZZI R, et al. A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC[J]. IEEE Transactions on Computers, 2003, 52(4): 403-409.
[8] WIECZOREK P Z, GOLOFIT K. Dual-metastability time-competitive true random number generator[J]. IEEE Transactions on Circuits and Systems, 2014, 61(1): 134-145.
[9] ROSIN D P, RONTANI D, GAUTHIER D J. Ultrafast physical generation of random numbers using hybrid Boolean networks[J]. Physical Review E, 2013, 87(4): 040902.
[10] DONG Lihua,YANG Hui,ZENG Yong. Analysis and improvement of true random number generator based on autonomous Boolean network[C]// The 13th International Conference on Computational Intelligence and Security. Hong Kong, China: IEEE, 2017, 1: 243-247.
[11] GHIL M, ZALIAPIN I, COLUZZI B. Boolean delay equations: a simple way of looking at complex systems[J]. Physica D: Nonlinear Phenomena, 2008, 237(23): 2967-2986.
[12] CAVALCANTE H L, GAUTHIER D J, SOCOLAR J E, et al. On the origin of chaos in autonomous Boolean networks[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2009, 368(1911): 495-513.
[13] ROSIN D P, RONTANI D, GAUTHIER D J, et al. Experiments on autonomous Boolean networks[J]. Chaos, 2013, 23(2): 025102.
[14] FRAGA L L, TLELO C E. Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators[J]. Nonlinear Dynamics, 2014, 76(2): 1503-1515.
[15] ROSENSTEIN M T, COLLINS J J, LUCA C D. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D: Nonlinear Phenomena, 1993, 65(1/2): 117-134.
[16] RUKHIN A L, SOTO J, NECHVATAL J R, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R/OL].[2019-02-01]. https://dl.acm.org/citation.cfm?id=2206233.

相似文献/References:

[1]汪喆,赵艺,郝巧燕,等.利用光学对比鉴定石墨烯和硒化铟的层数[J].深圳大学学报理工版,2019,36(4):382.[doi:10.3724/SP.J.1249.2019.04382]
 WANG Zhe,ZHAO Yi,HAO Qiaoyan,et al.Layer number identification of graphene and InSe by optical contrast[J].Journal of Shenzhen University Science and Engineering,2019,36(1):382.[doi:10.3724/SP.J.1249.2019.04382]

备注/Memo

备注/Memo:
Received:2019-02-25;Accepted:2019-04-25
Foundation:National Natural Science Foundation of China (61671316, 61731014, 61775158); Research Project of Shanxi Scholarship Council of China(2017-key-2);Natural Science Foundation of Shanxi Province (201801D121145)
Corresponding author:Professor ZHANG Jianguo.E-mail: zhangjianguo@tyut.edu.cn
Citation:YANG Rui,HOU Erlin,LIU Haifang, et al. Low-power physical random number generator using Boolean networks[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(1): 51-56.(in Chinese)
基金项目:国家自然科学基金资助项目(61671316,61731014,61775158);山西省回国留学人员科研基金资助项目(2017-重点-2);山西省自然科学基金资助项目(201801D121145)
作者简介:杨芮(1992—),太原理工大学硕士研究生.研究方向:宽带混沌的产生及应用.E-mail:18354255713@163.com
引文:杨芮,侯二林,刘海芳,等. 基于布尔网络的低功耗物理随机数发生器[J]. 深圳大学学报理工版,2020,37(1):51-56.
更新日期/Last Update: 2020-01-30