[1]蒋超,林静,黄鹏.新型近红外花菁类光声探针用于肼检测[J].深圳大学学报理工版,2020,37(1):33-38.[doi:10.3724/SP.J.1249.2020.01033]
 JIANG Chao,LIN Jing,and HUANG Peng.Novel near-infrared cyanine-based photoacoustic probe for hydrazine detection[J].Journal of Shenzhen University Science and Engineering,2020,37(1):33-38.[doi:10.3724/SP.J.1249.2020.01033]
点击复制

新型近红外花菁类光声探针用于肼检测()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第37卷
期数:
2020年第1期
页码:
33-38
栏目:
生物工程
出版日期:
2020-01-08

文章信息/Info

Title:
Novel near-infrared cyanine-based photoacoustic probe for hydrazine detection
文章编号:
202001005
作者:
蒋超林静黄鹏
深圳大学医学部生物医学工程学院,广东深圳518060
Author(s):
JIANG Chao LIN Jing and HUANG Peng
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong Province, P.R.China
关键词:
生物医学工程光声检测光声成像花菁类分子探针肼检测近红外光谱
Keywords:
biomedical engineering photoacoustic detection photoacoustic imaging cyanine molecule probe hydrazine detection near infrared spectroscopy
分类号:
Q819
DOI:
10.3724/SP.J.1249.2020.01033
文献标志码:
A
摘要:
肼含量的检测在化工、环境和生命健康等领域具有重要意义.利用在近红外区域具有较强吸收的花菁类分子为母体,发展新型光声探针用于肼检测.该探针在波长808 nm处具有很强的光声信号.当探针分子与肼作用后,随着溶液中肼浓度的增高,分子探针在波长808 nm处的光密度D(808)显著下降,而550 nm处的光密度D(550)明显升高,且在肼浓度为0~5 μmol/L内, D(808)/D(550)比值随肼浓度变化具有良好的线性关系.同时,新型光声探针在808 nm处的光声信号强度P(808)也随肼浓度增加而降低,并且在肼浓度为0~10 μmol/L内,P(808)与肼浓度呈良好的线性关系,肼检测限为0.50 μmol/L.该探针合成方法简单,并能够对肼实现快速高效的光声检测,为今后在体肼的检测提供了一种新的方法.
Abstract:
Hydrazine detection is of great significance in the fields of chemical industry, environment, life,health, and so on. A novel photoacoustic probe is designed and synthesized for hydrazine detection, using cyanine with strong near-infrared absorbance as the core. The probe has strong photoacoustic signal at 808 nm. When the probe molecules interact with the hydrazine, the absorbance intensities of probe at 808 nm and 550 nm decrease and increase with the increase of hydrazine concentration, respectively. The optical density ratio of D(808)/D(550) in the range of 0-5 μmol/L hydrazine concentration has a good linear relationship with the change of concentration. Meanwhile, photoacoustic intensity of probe at 808 nm P(808) gradually decreases with the increase of hydrazine concentration, and shows a good linear relationship in the range of 0-10 μmol/L, with a detection limit of 0.50 μmol/L. The probe is easy to synthesis and can achieve photoacoustic detection of hydrazine rapidly and efficiently, which provids a new solution for the development of in vivo detection of hydrazine.

参考文献/References:

[1] HU Lirong. Research on application of hydrazine hydrate as reductant in organic synthesis[J].Chemical Industry Times,2012,26(4):41-58.
[2] SELVAKUMAR S, SOMANATHAN N, REDDY K A. Chemiresistor sensors based on conducting polymers for hypergolic propellants and acidic vapors of rocket exhaust plumes: a review[J]. Propellants Explosives Pyrotechnics,2013,38(2):176-189.
[3] REILLY C A, AUST S D. Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA[J]. Chemical Research in Toxicology,1997,10(3):328-334.
[4] GARROD S, BOLLARD M E, NICHOLLST A W, et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat[J]. Chemical Research in Toxicology,2005,18(2):115-122.
[5] SULTANA W, ERAIAH B, VASAN H N. Efficient polyglycine modified Au electrode for the detection of hydrazine[J]. Analytical Methods,2012,4(12):4115-4120.
[6] ABDUL AZIZ M, KAWDE A N.Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine[J].Talanta,2013(115):214-221.
[7] WANG J, CHEN Liang. Hydrazine detection using a tyrosinase-based inhibition biosensor[J]. Analytical Chemistry,1995,67(20):3824-3827.
[8] MCBRIDE W R, HENRY R A, SKOLNIK S.Potentiometric titration of organic derivatives of hydrazine with potassium iodate[J].Analytical Chemistry,1953,25(7):1042-1046.
[9] GOSWAMI S, AICH K, DAS S, et al. A reaction based colorimetric as well as fluorescence‘turn on’probe for the rapid detection of hydrazine[J]. RSC Advances,2014,4(27):14210-14214.
[10] LI Biao, HE Zhaoshuai, ZHOU Hanxin,et al.Reaction based colorimetric and fluorescence probes for selective detection of hydrazine[J].Dyes and Pigments,2017(146):300-304.
[11] YU Fabiao, LI Peng, SONG Ping, et al. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells[J]. Chemical Communications,2012,48(23):2852-2854.
[12] CHEN Xiaoqiang, TIAN Xizhe, SHIN I, et al. Fluo-rescent and luminescent probes for detection of reactive oxygen and nitrogen species[J].Chemical Society Reviews,2011,40(9):4783-4804.
[13] FRANGIONI J V. In vivo near-infrared fluorescence imaging[J]. Current Opinion in Chemical Biology,2003,7(5):626-634.
[14] XU Jingjuan, ZHAO Weiwei, SONG Shiping, et al. Functional nanoprobes for ultrasensitive detection of biomolecules: an update[J]. Chemical Society Reviews,2014,43(5):1601-1611.
[15] ZENG Leli, MA Gongcheng, LIN Jing, et al. Photoacoustic probes for molecular detection: recent advances and perspectives[J]. Small,2018,14(30):e1800782.
[16] WANG Sheng, LIN Jing, WANG Tianfu, et al. Recent advances in photoacoustic imaging for deep-tissue biomedical applications[J].Theranostics,2016,6(13):2394-2413.
[17] XIE Chen, ZHEN Xu, LYU Yan, et al. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging[J].Advanced Materials,2017,29(44):1703693.
[18] LIU Yajing, LIU Huanhuan, YAN Huixiang, et al. Aggregation-induced absorption enhancement for deep near-infrared II photoacoustic imaging of brain gliomas in vivo[J]. Advanced Science,2019,6(8):1801615.
[19] LIU Yajing, YANG Yanping, SUN Mingjian, et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer[J]. Chemical Science,2017,8(4):2710-2716.
[20] LI Weitao, CHEN Ronghe, LV(L) Jing, et al. In vivo photoacoustic imaging of brain injury and rehabilitation by high-efficient near-infrared dye labeled mesen-chymal stem cells with enhanced brain barrier permeability[J]. Advanced Science,2018,5(2):1700277.
[21] WANG Sheng, LIN Jing, WANG Zhantong, et al. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy[J].Advanced Materials,2017,29(35):1701013.
[22] LI Chunxiao, ZHANG Yifan,LI Zhiming, et al. Light-responsive biodegradable nanorattles for cancer theranostics[J]. Advanced Materials, 2018, 30:1870049.
[23] QIN Xialing, LI Fan, ZHANG Yifan, et al. In vivo photoacoustic detection and imaging of peroxynitrite[J].Analytical Chemistry,2018,90(15):9381-9385.
[24] HUANG Yan, LI Fan, MA Gongcheng, et al. Aggregation induced photoacoustic detection of mercury (II) ions using quaternary ammonium group-capped gold nanorods[J].Talanta,2018,187:65-72.
[25] LIU Yi, WANG Sheng, MA Ying, et al. Ratiometric photoacoustic molecular imaging for methylmercury detection in living subjects[J]. Advanced Materials,2017,29(17):1606129.
[26] ZENG Leli, MA Gongcheng, XU Han, et al. In vivo chemoselective photoacoustic imaging of copper(II) in plant and animal subjects[J].Small,2019,15(6):e1803866.
[27] MA Gongcheng, GAO Xiaoting, JIANG Chao, et al. pH-Responsive nanoprobe for in vivo photoacoustic imaging of gastric acid[J].Analytical Chemistry,2019,91(21):13570-13575.
[28] GAO Xiaoting, MA Gongcheng, JIANG Chao, et al. In vivo near-infrared fluorescence and photoacoustic dual-modal imaging of endogenous alkaline phosphatase[J].Analytical Chemistry,2019,91(11):7112-7117.
[29] LI Lei, SHEMETOV A A, BALOBAN M,et al.Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo[J].Nature Communications,2018,9(1):2734.
[30] MRK J, DORTAY H, WAGENER A,et al.Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein[J].Communications Physics,2018,1(1):3.

相似文献/References:

[1]潘晓畅,冯乃章,陈思平.二维Savitzky-Golay数字差分器剪切波弹性成像方法[J].深圳大学学报理工版,2018,35(1):22.[doi:10.3724/SP.J.1249.2018.01022]
 PAN Xiaochang,FENG Naizhang,et al.A shear wave elastography method based on 2D Savitzky-Golay digital differentiator[J].Journal of Shenzhen University Science and Engineering,2018,35(1):22.[doi:10.3724/SP.J.1249.2018.01022]
[2]刘刚,钱建庭,李先明,等.X射线光声成像的信号检测与仿真[J].深圳大学学报理工版,2018,35(3):324.[doi:10.3724/SP.J.1249.2018.03324]
 LIU Gang,CHIN C T,LI Xianming,et al.Simulation and experimental detection of X-ray photo-acoustic[J].Journal of Shenzhen University Science and Engineering,2018,35(1):324.[doi:10.3724/SP.J.1249.2018.03324]
[3]胡鹏辉,王娜,王毅,等.基于全卷积神经网络的肛提肌裂孔智能识别[J].深圳大学学报理工版,2018,35(3):316.[doi:10.3724/SP.J.1249.2018.03316]
 HU Penghui,WANG Na,WANG Yi,et al.Automatic recognition of levator hiatus based on fully convolutional neural networks[J].Journal of Shenzhen University Science and Engineering,2018,35(1):316.[doi:10.3724/SP.J.1249.2018.03316]
[4]南嘉格列,李锐,王海霞,等.基于深度学习的肝包虫病超声图像分型研究[J].深圳大学学报理工版,2019,36(6):702.[doi:10.3724/SP.J.1249.2019.06702]
 NANJIA Gelie,LI Rui,WANG Haixia,et al.Ultrasound image classification for hepatic echinococcosis using deep learning[J].Journal of Shenzhen University Science and Engineering,2019,36(1):702.[doi:10.3724/SP.J.1249.2019.06702]

备注/Memo

备注/Memo:
Received:2019-09-28;Accepted:2019-10-29
Foundation:National Basic Research Program of China (2018YFA0704003)
Corresponding author:Professor HUANG Peng.E-mail: peng.huang@szu.edu.cn
Citation:JIANG Chao, LIN Jing, HUANG Peng.Novel near-infrared cyanine-based photoacoustic probe for hydrazine detection[J]. Journal of Shenzhen University Science and Engineering, 2020, 37(1): 33-38.(in Chinese)
基金项目:国家重点基础研究发展计划资助项目(2018YFA0704 003)
作者简介:蒋超(1994—),深圳大学硕士研究生.研究方向:分子影像学纳米医学.E-mail jiangchao2017@email.szu.edu.cn
引文:蒋超,林静,黄鹏.新型近红外花菁类光声探针用于肼检测[J]. 深圳大学学报理工版,2020,37(1):33-38.
更新日期/Last Update: 2020-01-30